We prove that nonnegative almost minimizers of the horizontal Bernoulli-type functional $$ J(u,\Omega):=\int_{\Omega}\Big( |\Hnabla u(x)|^2+\chi_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous in the intrinsic sense.
Ferrari, F., Forcillo, N., Merlino, E.M. (2025). Regularity for almost minimizers of a one-phase Bernoulli-type functional in Carnot groups of step two. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 64(4), 1-32 [10.1007/s00526-025-02959-x].
Regularity for almost minimizers of a one-phase Bernoulli-type functional in Carnot groups of step two
Ferrari, Fausto
;Merlino, Enzo Maria
2025
Abstract
We prove that nonnegative almost minimizers of the horizontal Bernoulli-type functional $$ J(u,\Omega):=\int_{\Omega}\Big( |\Hnabla u(x)|^2+\chi_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous in the intrinsic sense.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00526-025-02959-x (1).pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
545.32 kB
Formato
Adobe PDF
|
545.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.