We prove that nonnegative almost minimizers of the horizontal Bernoulli-type functional $$ J(u,\Omega):=\int_{\Omega}\Big( |\Hnabla u(x)|^2+\chi_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous in the intrinsic sense.

Ferrari, F., Forcillo, N., Merlino, E.M. (2025). Regularity for almost minimizers of a one-phase Bernoulli-type functional in Carnot groups of step two. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 64(4), 1-32 [10.1007/s00526-025-02959-x].

Regularity for almost minimizers of a one-phase Bernoulli-type functional in Carnot groups of step two

Ferrari, Fausto
;
Merlino, Enzo Maria
2025

Abstract

We prove that nonnegative almost minimizers of the horizontal Bernoulli-type functional $$ J(u,\Omega):=\int_{\Omega}\Big( |\Hnabla u(x)|^2+\chi_{\{u>0\}}(x)\Big)\,dx$$ are Lipschitz continuous in the intrinsic sense.
2025
Ferrari, F., Forcillo, N., Merlino, E.M. (2025). Regularity for almost minimizers of a one-phase Bernoulli-type functional in Carnot groups of step two. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 64(4), 1-32 [10.1007/s00526-025-02959-x].
Ferrari, Fausto; Forcillo, Nicolò; Merlino, Enzo Maria
File in questo prodotto:
File Dimensione Formato  
s00526-025-02959-x (1).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 545.32 kB
Formato Adobe PDF
545.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1009772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact