In recent advancements in machine learning, federated learning allows a network of distributed clients to collaboratively develop a global model without needing to share their local data. This technique aims to safeguard privacy, countering the vulnerabilities of conventional centralized learning methods. Traditional federated learning approaches often rely on a central server to coordinate model training across clients, aiming to replicate the same model uniformly across all nodes. However, these methods overlook the significance of geographical and local data variances in vast networks, potentially affecting model effectiveness and applicability. Moreover, relying on a central server might become a bottleneck in large networks, such as the ones promoted by edge computing. Our paper introduces a novel, fully-distributed federated learning strategy called proximity-based self-federated learning that enables the self-organised creation of multiple federations of clients based on their geographic proximity and data distribution without exchanging raw data. Indeed, unlike traditional algorithms, our approach encourages clients to share and adjust their models with neighbouring nodes based on geographic proximity and model accuracy. This method not only addresses the limitations posed by diverse data distributions but also enhances the model's adaptability to different regional characteristics creating specialized models for each federation.

Domini, D., Aguzzi, G., Farabegoli, N., Viroli, M., Esterle, L. (2024). Proximity-based Self-Federated Learning. Los Alamos : IEEE [10.1109/ACSOS61780.2024.00033].

Proximity-based Self-Federated Learning

Domini D.;Aguzzi G.;Farabegoli N.;Viroli M.;
2024

Abstract

In recent advancements in machine learning, federated learning allows a network of distributed clients to collaboratively develop a global model without needing to share their local data. This technique aims to safeguard privacy, countering the vulnerabilities of conventional centralized learning methods. Traditional federated learning approaches often rely on a central server to coordinate model training across clients, aiming to replicate the same model uniformly across all nodes. However, these methods overlook the significance of geographical and local data variances in vast networks, potentially affecting model effectiveness and applicability. Moreover, relying on a central server might become a bottleneck in large networks, such as the ones promoted by edge computing. Our paper introduces a novel, fully-distributed federated learning strategy called proximity-based self-federated learning that enables the self-organised creation of multiple federations of clients based on their geographic proximity and data distribution without exchanging raw data. Indeed, unlike traditional algorithms, our approach encourages clients to share and adjust their models with neighbouring nodes based on geographic proximity and model accuracy. This method not only addresses the limitations posed by diverse data distributions but also enhances the model's adaptability to different regional characteristics creating specialized models for each federation.
2024
Proceedings - 2024 IEEE International Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2024
139
144
Domini, D., Aguzzi, G., Farabegoli, N., Viroli, M., Esterle, L. (2024). Proximity-based Self-Federated Learning. Los Alamos : IEEE [10.1109/ACSOS61780.2024.00033].
Domini, D.; Aguzzi, G.; Farabegoli, N.; Viroli, M.; Esterle, L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1009421
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact