This article introduces ScaRLib, a Scala-based framework that aims to streamline the development cyber-physical swarms scenarios (i.e., systems of many interacting distributed devices that collectively accomplish system-wide tasks) by integrating macroprogramming and multi-agent reinforcement learning to design collective behavior. This framework serves as the starting point for a broader toolchain that will integrate these two approaches at multiple points to harness the capabilities of both, enabling the expression of complex and adaptive collective behavior.

Domini, D., Cavallari, F., Aguzzi, G., Viroli, M. (2024). ScaRLib: Towards a hybrid toolchain for aggregate computing and many-agent reinforcement learning. SCIENCE OF COMPUTER PROGRAMMING, 238, 1-8 [10.1016/j.scico.2024.103176].

ScaRLib: Towards a hybrid toolchain for aggregate computing and many-agent reinforcement learning

Domini D.;Aguzzi G.;Viroli M.
2024

Abstract

This article introduces ScaRLib, a Scala-based framework that aims to streamline the development cyber-physical swarms scenarios (i.e., systems of many interacting distributed devices that collectively accomplish system-wide tasks) by integrating macroprogramming and multi-agent reinforcement learning to design collective behavior. This framework serves as the starting point for a broader toolchain that will integrate these two approaches at multiple points to harness the capabilities of both, enabling the expression of complex and adaptive collective behavior.
2024
Domini, D., Cavallari, F., Aguzzi, G., Viroli, M. (2024). ScaRLib: Towards a hybrid toolchain for aggregate computing and many-agent reinforcement learning. SCIENCE OF COMPUTER PROGRAMMING, 238, 1-8 [10.1016/j.scico.2024.103176].
Domini, D.; Cavallari, F.; Aguzzi, G.; Viroli, M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1009420
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact