We compute three families of two-loop six-point massless Feynman integrals in dimensional regularization, namely the double-box, the pentagon-triangle, and the hegaxon-bubble family. This constitutes the first analytic computation of two-loop master integrals with eight scales. We use the method of canonical differential equations. We describe the corresponding integral basis with uniform transcendentality, the relevant function alphabet, and analytic boundary values at a particular point in the Euclidean region up to the fourth order in the regularization parameter & varepsilon;. The results are expressed as one-fold integrals over classical polylogarithms. We provide a set of supplementary files containing our results in machine-readable form, including a proof-of-concept implementation for numerical evaluations of the one-fold integrals valid within a subset of the Euclidean region.

Henn, J., Matijašić, A., Miczajka, J., Peraro, T., Xu, Y., Zhang, Y. (2024). A computation of two-loop six-point Feynman integrals in dimensional regularization. JOURNAL OF HIGH ENERGY PHYSICS, 2024(8), 0-37 [10.1007/JHEP08(2024)027].

A computation of two-loop six-point Feynman integrals in dimensional regularization

Peraro T.;
2024

Abstract

We compute three families of two-loop six-point massless Feynman integrals in dimensional regularization, namely the double-box, the pentagon-triangle, and the hegaxon-bubble family. This constitutes the first analytic computation of two-loop master integrals with eight scales. We use the method of canonical differential equations. We describe the corresponding integral basis with uniform transcendentality, the relevant function alphabet, and analytic boundary values at a particular point in the Euclidean region up to the fourth order in the regularization parameter & varepsilon;. The results are expressed as one-fold integrals over classical polylogarithms. We provide a set of supplementary files containing our results in machine-readable form, including a proof-of-concept implementation for numerical evaluations of the one-fold integrals valid within a subset of the Euclidean region.
2024
Henn, J., Matijašić, A., Miczajka, J., Peraro, T., Xu, Y., Zhang, Y. (2024). A computation of two-loop six-point Feynman integrals in dimensional regularization. JOURNAL OF HIGH ENERGY PHYSICS, 2024(8), 0-37 [10.1007/JHEP08(2024)027].
Henn, J.; Matijašić, A.; Miczajka, J.; Peraro, T.; Xu, Y.; Zhang, Y.
File in questo prodotto:
File Dimensione Formato  
JHEP08(2024)027.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 839.37 kB
Formato Adobe PDF
839.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1009354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact