Photoplethysmogram (PPG) signals recover key physiological parameters as pulse, oximetry, and ECG. In this paper, we first employ a hybrid architecture combining the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for the analysis of PPG signals to enable an automated quality recognition. Then, we compare its performance to a simpler CNN architecture enriched with Kolmogorov–Arnold Network (KAN) layers. Our results suggest that the usage of KAN layers is effective at reducing the number of parameters, while also enhancing the performance of CNNs when equipped with standard Multi-Layer Perceptron (MLP) layers.

Mehrab, A., Lapenna, M., Zanchetta, F., Simonetti, A., Faglioni, G., Malagoli, A., et al. (2025). Kolmogorov–Arnold and Long Short-Term Memory Convolutional Network Models for Supervised Quality Recognition of Photoplethysmogram Signals. ENTROPY, 27(4), 1-11 [10.3390/e27040326].

Kolmogorov–Arnold and Long Short-Term Memory Convolutional Network Models for Supervised Quality Recognition of Photoplethysmogram Signals

Lapenna, Michela;Zanchetta, Ferdinando;Fioresi, Rita
2025

Abstract

Photoplethysmogram (PPG) signals recover key physiological parameters as pulse, oximetry, and ECG. In this paper, we first employ a hybrid architecture combining the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for the analysis of PPG signals to enable an automated quality recognition. Then, we compare its performance to a simpler CNN architecture enriched with Kolmogorov–Arnold Network (KAN) layers. Our results suggest that the usage of KAN layers is effective at reducing the number of parameters, while also enhancing the performance of CNNs when equipped with standard Multi-Layer Perceptron (MLP) layers.
2025
Mehrab, A., Lapenna, M., Zanchetta, F., Simonetti, A., Faglioni, G., Malagoli, A., et al. (2025). Kolmogorov–Arnold and Long Short-Term Memory Convolutional Network Models for Supervised Quality Recognition of Photoplethysmogram Signals. ENTROPY, 27(4), 1-11 [10.3390/e27040326].
Mehrab, Aneeqa; Lapenna, Michela; Zanchetta, Ferdinando; Simonetti, Angelica; Faglioni, Giovanni; Malagoli, Andrea; Fioresi, Rita
File in questo prodotto:
File Dimensione Formato  
entropy2025.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1009334
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact