We prove that given a locally integrable function fon an open set of an Euclidean space the distributional derivative Xfwith respect to a locally Lipschitzian vector field Xis locally integrable if, and only if, the function fadmits a locally integrable upper gradient along the vector field X; in this case Xfcoincides with the Lie derivative LXfand |Xf|is the least upper gradient of the function f. Applications to systems of locally Lipschitzian vector fields are given
Venturini, S. (2025). Lipschitzian vector fields, upper gradients and distributional derivatives. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 545(1), 1-40 [10.1016/j.jmaa.2024.129085].
Lipschitzian vector fields, upper gradients and distributional derivatives
Venturini, Sergio
2025
Abstract
We prove that given a locally integrable function fon an open set of an Euclidean space the distributional derivative Xfwith respect to a locally Lipschitzian vector field Xis locally integrable if, and only if, the function fadmits a locally integrable upper gradient along the vector field X; in this case Xfcoincides with the Lie derivative LXfand |Xf|is the least upper gradient of the function f. Applications to systems of locally Lipschitzian vector fields are givenFile | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022247X24010072-main.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
527.06 kB
Formato
Adobe PDF
|
527.06 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.