We prove that given a locally integrable function fon an open set of an Euclidean space the distributional derivative Xfwith respect to a locally Lipschitzian vector field Xis locally integrable if, and only if, the function fadmits a locally integrable upper gradient along the vector field X; in this case Xfcoincides with the Lie derivative LXfand |Xf|is the least upper gradient of the function f. Applications to systems of locally Lipschitzian vector fields are given

Venturini, S. (2025). Lipschitzian vector fields, upper gradients and distributional derivatives. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 545(1), 1-40 [10.1016/j.jmaa.2024.129085].

Lipschitzian vector fields, upper gradients and distributional derivatives

Venturini, Sergio
2025

Abstract

We prove that given a locally integrable function fon an open set of an Euclidean space the distributional derivative Xfwith respect to a locally Lipschitzian vector field Xis locally integrable if, and only if, the function fadmits a locally integrable upper gradient along the vector field X; in this case Xfcoincides with the Lie derivative LXfand |Xf|is the least upper gradient of the function f. Applications to systems of locally Lipschitzian vector fields are given
2025
Venturini, S. (2025). Lipschitzian vector fields, upper gradients and distributional derivatives. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 545(1), 1-40 [10.1016/j.jmaa.2024.129085].
Venturini, Sergio
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X24010072-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 527.06 kB
Formato Adobe PDF
527.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1008863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact