Hamiltonian systems with a mixed phase space typically exhibit an algebraic decay of correlations and of Poincare' recurrences, with numerical experiments over finite times showing system-dependent power-law exponents. We conjecture the existence of a universal asymptotic decay based on results for a Markov tree model with random scaling factors for the transition probabilities. Numerical simulations for different Hamiltonian systems support this conjecture and permit the determination of the universal exponent.

G. Cristadoro, R. Ketzmerick (2008). Universality of Algebraic Decays in Hamiltonian Systems. PHYSICAL REVIEW LETTERS, 100, 184101-184105 [10.1103/PhysRevLett.100.184101].

Universality of Algebraic Decays in Hamiltonian Systems.

CRISTADORO, GIAMPAOLO;
2008

Abstract

Hamiltonian systems with a mixed phase space typically exhibit an algebraic decay of correlations and of Poincare' recurrences, with numerical experiments over finite times showing system-dependent power-law exponents. We conjecture the existence of a universal asymptotic decay based on results for a Markov tree model with random scaling factors for the transition probabilities. Numerical simulations for different Hamiltonian systems support this conjecture and permit the determination of the universal exponent.
2008
G. Cristadoro, R. Ketzmerick (2008). Universality of Algebraic Decays in Hamiltonian Systems. PHYSICAL REVIEW LETTERS, 100, 184101-184105 [10.1103/PhysRevLett.100.184101].
G. Cristadoro; R. Ketzmerick
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/100880
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 71
social impact