We numerically investigate the spin glass energy interface problem in three dimensions. We analyze the energy cost of changing the overlap from -1 to +1 at one boundary of two coupled systems (in the other boundary the overlap is kept fixed to +1). We implement a parallel tempering algorithm that simulate finite temperature systems and work with both cubic lattices and parallelepiped with fixed aspect ratio. We find results consistent with a lower critical dimension $D_c=2.5$. The results show a good agreement with the mean field theory predictions.

Interface Energy in the Edwards-Anderson Model

CONTUCCI, PIERLUIGI;
2011

Abstract

We numerically investigate the spin glass energy interface problem in three dimensions. We analyze the energy cost of changing the overlap from -1 to +1 at one boundary of two coupled systems (in the other boundary the overlap is kept fixed to +1). We implement a parallel tempering algorithm that simulate finite temperature systems and work with both cubic lattices and parallelepiped with fixed aspect ratio. We find results consistent with a lower critical dimension $D_c=2.5$. The results show a good agreement with the mean field theory predictions.
pierluigi contucci; cristian giardina; claudio giberti; giorgio parisi; cecilia vernia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/100863
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact