Polyoxylglycerides-based solid mixtures, commercially known as Gelucire®, are excipients commonly used for bioavailability improvement of poorly water-soluble drugs. However, their effect on solutions containing hydrophobic drugs above crystalline solubility has not yet been explored. The goal of this study was to investigate the impact of a mix of two commercial Gelucire® with high HLB values (Gelucire®50/13 and Gelucire®48/16) on the amorphous solubility and crystallization from supersaturated solutions of ketoprofen, used as model drug. The results evidenced a strong interaction between Gelucire® components and the drug-rich nanodroplets generated upon liquid–liquid phase separation. This led to two important consequences: on one hand, the drug amorphous solubility was decreased, together with the amorphous-to-crystalline solubility ratio; on the other hand, the enlargement and coalescence of the drug-rich droplets were prevented. This stabilizing effect towards the drug-rich phase was comparable to, or even stronger than, that obtained with traditional amorphous polymers (PVP or HPMC) and contributed to inhibiting drug crystallization. Notably, the impact of Gelucire® on drug crystallization from the supersaturated state depended on its micellar behaviour: the monomeric form (below 50 μg/mL) accelerated the formation of crystals, whereas pre-micellar aggregates (50–500 μg/mL) and solubilizing micelles (above 500 μg/mL) inhibited drug crystallization. These findings will contribute to a better understanding of the behaviour of supersaturated drug solutions in the presence of Gelucire® and will facilitate the rational design of supersaturating drug delivery systems containing these excipients.

Bertoni, S., Albertini, B., Passerini, N. (2025). Effect of polyoxylglycerides-based excipients (Gelucire®) on ketoprofen amorphous solubility and crystallization from the supersaturated state. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 669, 1-12 [10.1016/j.ijpharm.2024.125030].

Effect of polyoxylglycerides-based excipients (Gelucire®) on ketoprofen amorphous solubility and crystallization from the supersaturated state

Bertoni S.
Primo
;
Albertini B.
Secondo
;
Passerini N.
Ultimo
2025

Abstract

Polyoxylglycerides-based solid mixtures, commercially known as Gelucire®, are excipients commonly used for bioavailability improvement of poorly water-soluble drugs. However, their effect on solutions containing hydrophobic drugs above crystalline solubility has not yet been explored. The goal of this study was to investigate the impact of a mix of two commercial Gelucire® with high HLB values (Gelucire®50/13 and Gelucire®48/16) on the amorphous solubility and crystallization from supersaturated solutions of ketoprofen, used as model drug. The results evidenced a strong interaction between Gelucire® components and the drug-rich nanodroplets generated upon liquid–liquid phase separation. This led to two important consequences: on one hand, the drug amorphous solubility was decreased, together with the amorphous-to-crystalline solubility ratio; on the other hand, the enlargement and coalescence of the drug-rich droplets were prevented. This stabilizing effect towards the drug-rich phase was comparable to, or even stronger than, that obtained with traditional amorphous polymers (PVP or HPMC) and contributed to inhibiting drug crystallization. Notably, the impact of Gelucire® on drug crystallization from the supersaturated state depended on its micellar behaviour: the monomeric form (below 50 μg/mL) accelerated the formation of crystals, whereas pre-micellar aggregates (50–500 μg/mL) and solubilizing micelles (above 500 μg/mL) inhibited drug crystallization. These findings will contribute to a better understanding of the behaviour of supersaturated drug solutions in the presence of Gelucire® and will facilitate the rational design of supersaturating drug delivery systems containing these excipients.
2025
Bertoni, S., Albertini, B., Passerini, N. (2025). Effect of polyoxylglycerides-based excipients (Gelucire®) on ketoprofen amorphous solubility and crystallization from the supersaturated state. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 669, 1-12 [10.1016/j.ijpharm.2024.125030].
Bertoni, S.; Albertini, B.; Passerini, N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1008626
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
social impact