For $ q $, $ a $ integers such that $ a \geq 1 $, $ 1 < q $, $ (x, y) \in U $, $ U $ a neighborhood of the origin in $ \R^{2} $, we consider the operator % $$ D_{x}^{2} + x^{2(q-1)} D_{y}^{2} + y^{2a} D_{y}^{2} . $$ % Slightly modifying the method of proof of \cite{monom} we can see that it is Gevrey $ s_{0} $ hypoelliptic, where $ s_{0}^{-1} = 1 - a^{-1} (q - 1) q^{-1} $. Here we show that this value is optimal, i.e. that there are solutions to $ P u = f $ with $ f $ more regular than $ G^{s_{0}} $ that are not better than Gevrey $ s_{0} $. The above operator reduces to the M\'etivier operator (\cite{metivier81}) when $ a = 1 $, $ q = 2 $. We give a description of the characteristic manifold of the operator and of its relation with the Treves conjecture on the analytic hypoellipticity for sums of squares. A result of this type is an essential step to prove that there is no analytic hypoellipticity when the characteristic variety is not a symplectic manifold.

Bove, A., Mughetti, M. (2024). Optimal Gevrey regularity for certain sums of squares in two variables. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, XXV, 1877-1966 [10.2422/2036-2145.202205_011].

Optimal Gevrey regularity for certain sums of squares in two variables

Bove, Antonio;Mughetti, Marco
2024

Abstract

For $ q $, $ a $ integers such that $ a \geq 1 $, $ 1 < q $, $ (x, y) \in U $, $ U $ a neighborhood of the origin in $ \R^{2} $, we consider the operator % $$ D_{x}^{2} + x^{2(q-1)} D_{y}^{2} + y^{2a} D_{y}^{2} . $$ % Slightly modifying the method of proof of \cite{monom} we can see that it is Gevrey $ s_{0} $ hypoelliptic, where $ s_{0}^{-1} = 1 - a^{-1} (q - 1) q^{-1} $. Here we show that this value is optimal, i.e. that there are solutions to $ P u = f $ with $ f $ more regular than $ G^{s_{0}} $ that are not better than Gevrey $ s_{0} $. The above operator reduces to the M\'etivier operator (\cite{metivier81}) when $ a = 1 $, $ q = 2 $. We give a description of the characteristic manifold of the operator and of its relation with the Treves conjecture on the analytic hypoellipticity for sums of squares. A result of this type is an essential step to prove that there is no analytic hypoellipticity when the characteristic variety is not a symplectic manifold.
2024
Bove, A., Mughetti, M. (2024). Optimal Gevrey regularity for certain sums of squares in two variables. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, XXV, 1877-1966 [10.2422/2036-2145.202205_011].
Bove, Antonio; Mughetti, Marco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1008538
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact