This study evaluates the biases in Gemini 2.0 Flash Experimental, a state-of-the-art large language model (LLM) developed by Google, focusing on content moderation and gender disparities. By comparing its performance to ChatGPT-4o, examined in a previous work of the author, the analysis highlights some differences in ethical moderation practices. Gemini 2.0 demonstrates reduced gender bias, notably with female-specific prompts achieving a substantial rise in acceptance rates compared to results obtained by ChatGPT-4o. It adopts a more permissive stance toward sexual content and maintains relatively high acceptance rates for violent prompts (including gender-specific cases). Despite these changes, whether they constitute an improvement is debatable. While gender bias has been reduced, this reduction comes at the cost of permitting more violent content toward both males and females, potentially normalizing violence rather than mitigating harm. Male-specific prompts still generally receive higher acceptance rates than female-specific ones. These findings underscore the complexities of aligning AI systems with ethical standards, highlighting progress in reducing certain biases while raising concerns about the broader implications of the model’s permissiveness. Ongoing refinements are essential to achieve moderation practices that ensure transparency, fairness, and inclusivity without amplifying harmful content.

Balestri, R. (2025). Gender and content bias in Large Language Models: a case study on Google Gemini 2.0 Flash Experimental. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 8, 1-12 [10.3389/frai.2025.1558696].

Gender and content bias in Large Language Models: a case study on Google Gemini 2.0 Flash Experimental

Roberto Balestri
Primo
2025

Abstract

This study evaluates the biases in Gemini 2.0 Flash Experimental, a state-of-the-art large language model (LLM) developed by Google, focusing on content moderation and gender disparities. By comparing its performance to ChatGPT-4o, examined in a previous work of the author, the analysis highlights some differences in ethical moderation practices. Gemini 2.0 demonstrates reduced gender bias, notably with female-specific prompts achieving a substantial rise in acceptance rates compared to results obtained by ChatGPT-4o. It adopts a more permissive stance toward sexual content and maintains relatively high acceptance rates for violent prompts (including gender-specific cases). Despite these changes, whether they constitute an improvement is debatable. While gender bias has been reduced, this reduction comes at the cost of permitting more violent content toward both males and females, potentially normalizing violence rather than mitigating harm. Male-specific prompts still generally receive higher acceptance rates than female-specific ones. These findings underscore the complexities of aligning AI systems with ethical standards, highlighting progress in reducing certain biases while raising concerns about the broader implications of the model’s permissiveness. Ongoing refinements are essential to achieve moderation practices that ensure transparency, fairness, and inclusivity without amplifying harmful content.
2025
Balestri, R. (2025). Gender and content bias in Large Language Models: a case study on Google Gemini 2.0 Flash Experimental. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 8, 1-12 [10.3389/frai.2025.1558696].
Balestri, Roberto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1008227
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact