Machine data (MD), that is, data generated by machines, are increasingly gain-ing importance, potentially surpassing the value of the extensively discussed personaldata. We present a theoretical analysis of the MD market, addressing challenges such asdata fragmentation, ambiguous property rights, and the public-good nature of MD. Weconsider machine users producing data and data aggregators providing MD analyticsservices (e.g., with digital twins for real-time simulation and optimization). By analyzingmachine learning algorithms, we identify critical properties for the value of MD analytics,Scale, Scope, and Synergy. We leverage these properties to explore market scenarios,including anonymous and secret contracting, competition among MD producers, and mul-tiple competing aggregators. We identify significant inefficiencies and market failures,highlighting the need for nuanced policy interventions

Calzolari, G., Rovatti, R., Cheysson, A. (2025). Machine Data: Market and Analytics. MANAGEMENT SCIENCE, 71(10), 8230-8251 [10.1287/mnsc.2023.00674].

Machine Data: Market and Analytics

Giacomo Calzolari;Riccardo Rovatti;Anatole Cheysson
2025

Abstract

Machine data (MD), that is, data generated by machines, are increasingly gain-ing importance, potentially surpassing the value of the extensively discussed personaldata. We present a theoretical analysis of the MD market, addressing challenges such asdata fragmentation, ambiguous property rights, and the public-good nature of MD. Weconsider machine users producing data and data aggregators providing MD analyticsservices (e.g., with digital twins for real-time simulation and optimization). By analyzingmachine learning algorithms, we identify critical properties for the value of MD analytics,Scale, Scope, and Synergy. We leverage these properties to explore market scenarios,including anonymous and secret contracting, competition among MD producers, and mul-tiple competing aggregators. We identify significant inefficiencies and market failures,highlighting the need for nuanced policy interventions
2025
Calzolari, G., Rovatti, R., Cheysson, A. (2025). Machine Data: Market and Analytics. MANAGEMENT SCIENCE, 71(10), 8230-8251 [10.1287/mnsc.2023.00674].
Calzolari, Giacomo; Rovatti, Riccardo; Cheysson, Anatole
File in questo prodotto:
File Dimensione Formato  
Cooperative_analytics__Giacomo_ (5).pdf

accesso aperto

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1008181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact