This article is devoted to the study of a 2-dimensional piecewise smooth (but possibly) discontinuous dynamical system, subject to a non-autonomous perturbation; we assume that the unperturbed system admits a homoclinic trajectory ⃗γ(t). Our aim is to analyze the dynamics in a neighborhood of ⃗γ(t) as the perturbation is turned on, by defining a Poincar´e map and evaluating fly time and space displacement of trajectories performing a loop close to ⃗γ(t). Besides their intrinsic mathematical interest, these results can be thought of as a first step in the analysis of several interesting problems, such as the stability of a homoclinic trajectory of a non-autonomous ODE and a possible extension of Melnikov chaos to a discontinuous setting.
Calamai, A., Franca, M., Pospisil, M. (2024). On the dynamics of non-autonomous systems in a neighborhood of a homoclinic trajectory. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 56, 143-209.
On the dynamics of non-autonomous systems in a neighborhood of a homoclinic trajectory
Matteo Franca
Membro del Collaboration Group
;
2024
Abstract
This article is devoted to the study of a 2-dimensional piecewise smooth (but possibly) discontinuous dynamical system, subject to a non-autonomous perturbation; we assume that the unperturbed system admits a homoclinic trajectory ⃗γ(t). Our aim is to analyze the dynamics in a neighborhood of ⃗γ(t) as the perturbation is turned on, by defining a Poincar´e map and evaluating fly time and space displacement of trajectories performing a loop close to ⃗γ(t). Besides their intrinsic mathematical interest, these results can be thought of as a first step in the analysis of several interesting problems, such as the stability of a homoclinic trajectory of a non-autonomous ODE and a possible extension of Melnikov chaos to a discontinuous setting.| File | Dimensione | Formato | |
|---|---|---|---|
|
RIMUT-56-2024_Calamai_Et-al.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


