This article is devoted to the study of a 2-dimensional piecewise smooth (but possibly) discontinuous dynamical system, subject to a non-autonomous perturbation; we assume that the unperturbed system admits a homoclinic trajectory ⃗γ(t). Our aim is to analyze the dynamics in a neighborhood of ⃗γ(t) as the perturbation is turned on, by defining a Poincar´e map and evaluating fly time and space displacement of trajectories performing a loop close to ⃗γ(t). Besides their intrinsic mathematical interest, these results can be thought of as a first step in the analysis of several interesting problems, such as the stability of a homoclinic trajectory of a non-autonomous ODE and a possible extension of Melnikov chaos to a discontinuous setting.

Calamai, A., Franca, M., Pospisil, M. (2024). On the dynamics of non-autonomous systems in a neighborhood of a homoclinic trajectory. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 56, 1-67.

On the dynamics of non-autonomous systems in a neighborhood of a homoclinic trajectory

Matteo Franca
Membro del Collaboration Group
;
2024

Abstract

This article is devoted to the study of a 2-dimensional piecewise smooth (but possibly) discontinuous dynamical system, subject to a non-autonomous perturbation; we assume that the unperturbed system admits a homoclinic trajectory ⃗γ(t). Our aim is to analyze the dynamics in a neighborhood of ⃗γ(t) as the perturbation is turned on, by defining a Poincar´e map and evaluating fly time and space displacement of trajectories performing a loop close to ⃗γ(t). Besides their intrinsic mathematical interest, these results can be thought of as a first step in the analysis of several interesting problems, such as the stability of a homoclinic trajectory of a non-autonomous ODE and a possible extension of Melnikov chaos to a discontinuous setting.
2024
Calamai, A., Franca, M., Pospisil, M. (2024). On the dynamics of non-autonomous systems in a neighborhood of a homoclinic trajectory. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 56, 1-67.
Calamai, Alessandro; Franca, Matteo; Pospisil, Michal
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1008166
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact