In the context of the potential future use of unmanned ground vehicles for forest inventories, we present the first experiences with SPOT, a legged robot equipped with a LiDAR instrument and several cameras that have been used with a teleoperation approach for single-tree detection and measurements. This first test was carried out using the default LiDAR system (the so-called enhanced autonomy payload-EAP, installed on the board of SPOT to guide autonomous movements) to understand advantages and limitations of this platform to support forest inventory activities. The test was carried out in the Vallombrosa forest (Italy) by assessing different data acquisition methods. The first results showed that EAP LiDAR generated noisy point clouds where only large trees (DBH ≥ 20 cm) could be identified. The results showed that the accuracy in tree identification and DBH measurements were strongly influenced by the path used for data acquisition, with average errors in tree positioning no less than 1.9 m. Despite this, the best methods allowed the correct identification of 97% of large trees.

Chirici, G., Giannetti, F., D'Amico, G., Vangi, E., Francini, S., Borghi, C., et al. (2023). Robotics in forest inventories: SPOT’s first steps. FORESTS, 14(11), 1-14 [10.3390/f14112170].

Robotics in forest inventories: SPOT’s first steps

Francini S.;
2023

Abstract

In the context of the potential future use of unmanned ground vehicles for forest inventories, we present the first experiences with SPOT, a legged robot equipped with a LiDAR instrument and several cameras that have been used with a teleoperation approach for single-tree detection and measurements. This first test was carried out using the default LiDAR system (the so-called enhanced autonomy payload-EAP, installed on the board of SPOT to guide autonomous movements) to understand advantages and limitations of this platform to support forest inventory activities. The test was carried out in the Vallombrosa forest (Italy) by assessing different data acquisition methods. The first results showed that EAP LiDAR generated noisy point clouds where only large trees (DBH ≥ 20 cm) could be identified. The results showed that the accuracy in tree identification and DBH measurements were strongly influenced by the path used for data acquisition, with average errors in tree positioning no less than 1.9 m. Despite this, the best methods allowed the correct identification of 97% of large trees.
2023
Chirici, G., Giannetti, F., D'Amico, G., Vangi, E., Francini, S., Borghi, C., et al. (2023). Robotics in forest inventories: SPOT’s first steps. FORESTS, 14(11), 1-14 [10.3390/f14112170].
Chirici, G.; Giannetti, F.; D'Amico, G.; Vangi, E.; Francini, S.; Borghi, C.; Corona, P.; Travaglini, D.
File in questo prodotto:
File Dimensione Formato  
forests-14-02170-v3.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1007954
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact