Chen-Gounelas-Liedtke recently introduced a powerful regeneration technique, a process opposite to specialization, to prove existence results for rational curves on projective surfaces. We show that, for projective irreducible holomorphic symplectic manifolds, an analogous regeneration principle holds and provides a very flexible tool to prove existence of uniruled divisors, significantly improving known results.

Mongardi, G., Pacienza, G. (2025). Regenerations and applications. FORUM OF MATHEMATICS. SIGMA, 13, 1-7 [10.1017/fms.2024.153].

Regenerations and applications

Mongardi G.;Pacienza G.
2025

Abstract

Chen-Gounelas-Liedtke recently introduced a powerful regeneration technique, a process opposite to specialization, to prove existence results for rational curves on projective surfaces. We show that, for projective irreducible holomorphic symplectic manifolds, an analogous regeneration principle holds and provides a very flexible tool to prove existence of uniruled divisors, significantly improving known results.
2025
Mongardi, G., Pacienza, G. (2025). Regenerations and applications. FORUM OF MATHEMATICS. SIGMA, 13, 1-7 [10.1017/fms.2024.153].
Mongardi, G.; Pacienza, G.
File in questo prodotto:
File Dimensione Formato  
regenerations_and_applications.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 231.3 kB
Formato Adobe PDF
231.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1007541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact