Chen-Gounelas-Liedtke recently introduced a powerful regeneration technique, a process opposite to specialization, to prove existence results for rational curves on projective surfaces. We show that, for projective irreducible holomorphic symplectic manifolds, an analogous regeneration principle holds and provides a very flexible tool to prove existence of uniruled divisors, significantly improving known results.
Mongardi, G., Pacienza, G. (2025). Regenerations and applications. FORUM OF MATHEMATICS. SIGMA, 13, 1-7 [10.1017/fms.2024.153].
Regenerations and applications
Mongardi G.;Pacienza G.
2025
Abstract
Chen-Gounelas-Liedtke recently introduced a powerful regeneration technique, a process opposite to specialization, to prove existence results for rational curves on projective surfaces. We show that, for projective irreducible holomorphic symplectic manifolds, an analogous regeneration principle holds and provides a very flexible tool to prove existence of uniruled divisors, significantly improving known results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
regenerations_and_applications.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
231.3 kB
Formato
Adobe PDF
|
231.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.