In this paper we construct the fractional powers of the sub-Laplacian in Carnot groups through an analytic continuation approach. In addition, we characterize the powers of the fractional sub-Laplacian in the Heisenberg group, and as a byproduct we compute the k-th order momenta with respect to the heat kernel.

Corni, F., Ferrari, F. (2025). The Fractional Powers of the Sub-Laplacian in Carnot Groups Through an Analytic Continuation. THE JOURNAL OF GEOMETRIC ANALYSIS, 35(4), 1-94 [10.1007/s12220-025-01924-6].

The Fractional Powers of the Sub-Laplacian in Carnot Groups Through an Analytic Continuation

Corni, Francesca;Ferrari, Fausto
2025

Abstract

In this paper we construct the fractional powers of the sub-Laplacian in Carnot groups through an analytic continuation approach. In addition, we characterize the powers of the fractional sub-Laplacian in the Heisenberg group, and as a byproduct we compute the k-th order momenta with respect to the heat kernel.
2025
Corni, F., Ferrari, F. (2025). The Fractional Powers of the Sub-Laplacian in Carnot Groups Through an Analytic Continuation. THE JOURNAL OF GEOMETRIC ANALYSIS, 35(4), 1-94 [10.1007/s12220-025-01924-6].
Corni, Francesca; Ferrari, Fausto
File in questo prodotto:
File Dimensione Formato  
s12220-025-01924-6 (2).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1006496
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact