In this paper we construct the fractional powers of the sub-Laplacian in Carnot groups through an analytic continuation approach. In addition, we characterize the powers of the fractional sub-Laplacian in the Heisenberg group, and as a byproduct we compute the k-th order momenta with respect to the heat kernel.
Corni, F., Ferrari, F. (2025). The Fractional Powers of the Sub-Laplacian in Carnot Groups Through an Analytic Continuation. THE JOURNAL OF GEOMETRIC ANALYSIS, 35(4), 1-94 [10.1007/s12220-025-01924-6].
The Fractional Powers of the Sub-Laplacian in Carnot Groups Through an Analytic Continuation
Corni, Francesca;Ferrari, Fausto
2025
Abstract
In this paper we construct the fractional powers of the sub-Laplacian in Carnot groups through an analytic continuation approach. In addition, we characterize the powers of the fractional sub-Laplacian in the Heisenberg group, and as a byproduct we compute the k-th order momenta with respect to the heat kernel.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s12220-025-01924-6 (2).pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.