The development of an instrumented patellar prosthesis, able to measure the contact forces at the patellofemoral joint, can significantly aid in investigating the causes of total knee arthroplasty failures due to patellar complications. This study focuses on developing and validating an instrumented patellar prosthesis to measure contact forces in the patellofemoral joint. A piezoresistive force sensor was characterized and integrated into a conditioning circuit, with the aim of its implementation in the prosthesis. To measure medial and lateral forces independently, the sensors were trimmed in half. Compression tests (up to 2000 N) assessed sensor performance in terms of linearity (R2 = 0.998 intact vs. 0.989 trimmed), repeatability (0.9% intact vs. 0.8% trimmed), and accuracy (1.7% intact vs. 2.3% trimmed) for forces up to 250 N. Higher force levels resulted in increased errors, but at a rate still comparable to that of existing sensors in the literature. Key considerations for the design of the instrumented prosthesis, such as minimizing point and shear loads, were identified. A prototype prosthesis capable of housing the sensor was proposed. The integrated system shows potential for improving the understanding of Total knee arthroplasty (TKA) failures through in vitro studies and could serve as an intraoperative tool for the evaluation of bone resections.
Maioli, V., Zauli, M., Cappello, A., Cristofolini, L. (2025). Force Sensor for Instrumented Patellar Prostheses: Development and Characterization. SENSORS, 25(4), 1-12 [10.3390/s25041226].
Force Sensor for Instrumented Patellar Prostheses: Development and Characterization
Maioli, VeraPrimo
;Zauli, MatteoSecondo
;Cristofolini, Luca
Ultimo
2025
Abstract
The development of an instrumented patellar prosthesis, able to measure the contact forces at the patellofemoral joint, can significantly aid in investigating the causes of total knee arthroplasty failures due to patellar complications. This study focuses on developing and validating an instrumented patellar prosthesis to measure contact forces in the patellofemoral joint. A piezoresistive force sensor was characterized and integrated into a conditioning circuit, with the aim of its implementation in the prosthesis. To measure medial and lateral forces independently, the sensors were trimmed in half. Compression tests (up to 2000 N) assessed sensor performance in terms of linearity (R2 = 0.998 intact vs. 0.989 trimmed), repeatability (0.9% intact vs. 0.8% trimmed), and accuracy (1.7% intact vs. 2.3% trimmed) for forces up to 250 N. Higher force levels resulted in increased errors, but at a rate still comparable to that of existing sensors in the literature. Key considerations for the design of the instrumented prosthesis, such as minimizing point and shear loads, were identified. A prototype prosthesis capable of housing the sensor was proposed. The integrated system shows potential for improving the understanding of Total knee arthroplasty (TKA) failures through in vitro studies and could serve as an intraoperative tool for the evaluation of bone resections.File | Dimensione | Formato | |
---|---|---|---|
Maioli-patellar_piezoresistive_sensor-SENSORS-OPEN_ACCESS.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.