We study the inertia stack of [M 0,n/S n], the quotient stack of the moduli space of smooth genus 0 curves with n marked points via the action of the symmetric group S n. Then we see how-from this analysis-we can obtain a description of the inertia stack of Hg, the moduli stack of hyperelliptic curves of genus g. From this, we can compute additively the Chen-Ruan (or orbifold) cohomology of H g. © 2011 The Author(s).

Pagani, N. (2011). The Orbifold Cohomology of Moduli of Hyperelliptic Curves. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012(10), 2163-2178 [10.1093/imrn/rnr106].

The Orbifold Cohomology of Moduli of Hyperelliptic Curves

Pagani, N.
2011

Abstract

We study the inertia stack of [M 0,n/S n], the quotient stack of the moduli space of smooth genus 0 curves with n marked points via the action of the symmetric group S n. Then we see how-from this analysis-we can obtain a description of the inertia stack of Hg, the moduli stack of hyperelliptic curves of genus g. From this, we can compute additively the Chen-Ruan (or orbifold) cohomology of H g. © 2011 The Author(s).
2011
Pagani, N. (2011). The Orbifold Cohomology of Moduli of Hyperelliptic Curves. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012(10), 2163-2178 [10.1093/imrn/rnr106].
Pagani, N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1005989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact