Let the bielliptic locus be the closure in the moduli space of stable curves of the locus of smooth curves that are double covers of genus 1 curves. In this paper we compute the class of the bielliptic locus in \bar{M}_3 in terms of a standard basis of the rational Chow group of codimension-2 classes in the moduli space. Our method is to test the class on the hyperelliptic locus: this gives the desired result up to two free parameters, which are then determined by intersecting the locus with two surfaces in \bar{M}_3.

Faber, C., Pagani, N. (2015). The class of the bielliptic locus in genus 3. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015(12), 3943-3961 [10.1093/imrn/rnu057].

The class of the bielliptic locus in genus 3

Pagani N.
2015

Abstract

Let the bielliptic locus be the closure in the moduli space of stable curves of the locus of smooth curves that are double covers of genus 1 curves. In this paper we compute the class of the bielliptic locus in \bar{M}_3 in terms of a standard basis of the rational Chow group of codimension-2 classes in the moduli space. Our method is to test the class on the hyperelliptic locus: this gives the desired result up to two free parameters, which are then determined by intersecting the locus with two surfaces in \bar{M}_3.
2015
Faber, C., Pagani, N. (2015). The class of the bielliptic locus in genus 3. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015(12), 3943-3961 [10.1093/imrn/rnu057].
Faber, C.; Pagani, N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1005956
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact