For any finite abelian group G, we study the moduli space of abelian G-covers of elliptic curves, in particular identifying the irreducible components of the moduli space. We prove that in the totally ramified case, the moduli space has trivial rational Picard group, and it is birational to the moduli space M1,n, where n is the number of branch points. In the particular case of moduli of bielliptic curves, we also prove that the boundary divisors are a basis of the rational Picard group of the admissible covers compactification of the moduli space. Our methods are entirely algebro-geometric.

Pagani, N. (2016). Moduli of abelian covers of elliptic curves. JOURNAL OF PURE AND APPLIED ALGEBRA, 220(3), 1258-1279 [10.1016/j.jpaa.2015.08.020].

Moduli of abelian covers of elliptic curves

Pagani N.
2016

Abstract

For any finite abelian group G, we study the moduli space of abelian G-covers of elliptic curves, in particular identifying the irreducible components of the moduli space. We prove that in the totally ramified case, the moduli space has trivial rational Picard group, and it is birational to the moduli space M1,n, where n is the number of branch points. In the particular case of moduli of bielliptic curves, we also prove that the boundary divisors are a basis of the rational Picard group of the admissible covers compactification of the moduli space. Our methods are entirely algebro-geometric.
2016
Pagani, N. (2016). Moduli of abelian covers of elliptic curves. JOURNAL OF PURE AND APPLIED ALGEBRA, 220(3), 1258-1279 [10.1016/j.jpaa.2015.08.020].
Pagani, N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1005955
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact