We prove that the extension of the double ramification cycle defined by the first-named author (using modifications of the stack of stable curves) coincides with one of those defined by the last-two named authors (using an extended Brill–Noether locus on a suitable compactified universal Jacobians). In particular, in the untwisted case we deduce that both of these extensions coincide with that constructed by Li and Graber–Vakil using a virtual fundamental class on a space of rubber maps.

Holmes, D., Kass, J.L., Pagani, N. (2018). Extending the double ramification cycle using Jacobians. EUROPEAN JOURNAL OF MATHEMATICS, 4(3), 1087-1099 [10.1007/s40879-018-0256-7].

Extending the double ramification cycle using Jacobians

Pagani, Nicola
2018

Abstract

We prove that the extension of the double ramification cycle defined by the first-named author (using modifications of the stack of stable curves) coincides with one of those defined by the last-two named authors (using an extended Brill–Noether locus on a suitable compactified universal Jacobians). In particular, in the untwisted case we deduce that both of these extensions coincide with that constructed by Li and Graber–Vakil using a virtual fundamental class on a space of rubber maps.
2018
Holmes, D., Kass, J.L., Pagani, N. (2018). Extending the double ramification cycle using Jacobians. EUROPEAN JOURNAL OF MATHEMATICS, 4(3), 1087-1099 [10.1007/s40879-018-0256-7].
Holmes, David; Kass, Jesse Leo; Pagani, Nicola
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1005951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact