The adoption of dynamic spectrum sharing requires addressing various technical challenges, such as intelligent sens- ing and radio frequency (RF) spectrum awareness. In this scenario, we present a new framework that utilises variational Bayes factor analysis (VBFA) for cooperative wideband spectrum sensing (WSS) without any prior assumption. The approach is data-driven and capable of detecting unused spectrum bands using a test statistic on an evidence lower bound (ELBO). The framework is then applied to a case study that considers shadowing effects and frequency-selective multipath channels between primary users (PUs) and sensors. The solution performs better than the state-of-the-art methods, demonstrating excellent performance in low signal-to-noise ratio (SNR) environments, e.g., reaching a detection probability of 90% for a nominal SNR of −10 dB.

Arcangeloni, L., Testi, E., Giorgetti, A. (2024). Cooperative wideband spectrum sensing: A variational bayesian inference approach. Piscataway : IEEE [10.1109/PIMRC59610.2024.10817413].

Cooperative wideband spectrum sensing: A variational bayesian inference approach

Luca Arcangeloni;Enrico Testi;Andrea Giorgetti
2024

Abstract

The adoption of dynamic spectrum sharing requires addressing various technical challenges, such as intelligent sens- ing and radio frequency (RF) spectrum awareness. In this scenario, we present a new framework that utilises variational Bayes factor analysis (VBFA) for cooperative wideband spectrum sensing (WSS) without any prior assumption. The approach is data-driven and capable of detecting unused spectrum bands using a test statistic on an evidence lower bound (ELBO). The framework is then applied to a case study that considers shadowing effects and frequency-selective multipath channels between primary users (PUs) and sensors. The solution performs better than the state-of-the-art methods, demonstrating excellent performance in low signal-to-noise ratio (SNR) environments, e.g., reaching a detection probability of 90% for a nominal SNR of −10 dB.
2024
IEEE Int. Symp. on Personal, Indoor, and Mobile Radio Comm. (PIMRC)
1
6
Arcangeloni, L., Testi, E., Giorgetti, A. (2024). Cooperative wideband spectrum sensing: A variational bayesian inference approach. Piscataway : IEEE [10.1109/PIMRC59610.2024.10817413].
Arcangeloni, Luca; Testi, Enrico; Giorgetti, Andrea
File in questo prodotto:
File Dimensione Formato  
C24_PIMRC_ArcTesGio_VBFA.pdf

embargo fino al 01/01/2027

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 865.23 kB
Formato Adobe PDF
865.23 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1005915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact