: X-linked acrogigantism (X-LAG) is a rare form of pituitary gigantism that is associated with growth hormone (GH) and prolactin-secreting pituitary adenomas/pituitary neuroendocrine tumors (PitNETs) that develop in infancy. It is caused by a duplication on chromosome Xq26.3 that leads to the misexpression of the gene GPR101, a constitutively active stimulator of pituitary GH and prolactin secretion. GPR101 normally exists within its own topologically associating domain (TAD) and is insulated from surrounding regulatory elements. X-LAG is a TADopathy in which the duplication disrupts a conserved TAD border, leading to a neo-TAD in which ectopic enhancers drive GPR101 over-expression, thus causing gigantism. Here we trace the full diagnostic and therapeutic pathway of a female patient with X-LAG from 4C-seq studies demonstrating the neo-TAD through medical and surgical interventions and detailed tumor histopathology. The complex nature of treating young children with X-LAG is illustrated, including the achievement of hormonal control using a combination of neurosurgery and adult doses of first-generation somatostatin analogs.
Caruso, M., Mazzatenta, D., Asioli, S., Costanza, G., Trivellin, G., Franke, M., et al. (2024). Case report: Management of pediatric gigantism caused by the TADopathy, X-linked acrogigantism. FRONTIERS IN ENDOCRINOLOGY, 15, 1-9 [10.3389/fendo.2024.1345363].
Case report: Management of pediatric gigantism caused by the TADopathy, X-linked acrogigantism
Mazzatenta, Diego;Asioli, Sofia;
2024
Abstract
: X-linked acrogigantism (X-LAG) is a rare form of pituitary gigantism that is associated with growth hormone (GH) and prolactin-secreting pituitary adenomas/pituitary neuroendocrine tumors (PitNETs) that develop in infancy. It is caused by a duplication on chromosome Xq26.3 that leads to the misexpression of the gene GPR101, a constitutively active stimulator of pituitary GH and prolactin secretion. GPR101 normally exists within its own topologically associating domain (TAD) and is insulated from surrounding regulatory elements. X-LAG is a TADopathy in which the duplication disrupts a conserved TAD border, leading to a neo-TAD in which ectopic enhancers drive GPR101 over-expression, thus causing gigantism. Here we trace the full diagnostic and therapeutic pathway of a female patient with X-LAG from 4C-seq studies demonstrating the neo-TAD through medical and surgical interventions and detailed tumor histopathology. The complex nature of treating young children with X-LAG is illustrated, including the achievement of hormonal control using a combination of neurosurgery and adult doses of first-generation somatostatin analogs.File | Dimensione | Formato | |
---|---|---|---|
fendo-15-1345363_compressed.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
5.6 MB
Formato
Adobe PDF
|
5.6 MB | Adobe PDF | Visualizza/Apri |
Image 1.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per accesso libero gratuito
Dimensione
96.51 kB
Formato
Adobe PDF
|
96.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.