This paper addresses a critical security challenge in the field of automated face recognition, i.e., morphing attack. The paper introduces a novel differential morphing attack detection (D-MAD) system called ACIdA, which is specifically designed to overcome the limitations of existing D-MAD approaches. Traditional methods are effective when the morphed image and live capture are distinct, but they falter when the morphed image closely resembles the accomplice. This is a critical gap because detecting accomplice involvement in addition to the criminal one is essential for robust security. ACIdA′s impact is underscored by its innovative approach, which consists of three modules: One for classifying the type of attempt (bona fide, criminal, or accomplice verification attempt), and two others dedicated to analyzing identity and artifacts. This multi-faceted approach enables ACIdA to excel in scenarios where the morphed image does not equally represent both contributing subjects — a common and challenging situation in real-world applications. The paper′s extensive cross-dataset experimental evaluation demonstrates that ACIdA achieves state-of-the-art results in detecting accomplices, a crucial advancement for enhancing the security of face recognition systems. Furthermore, it maintains strong performance in identifying criminals, thereby addressing a significant vulnerability in current D-MAD methods and marking a substantial contribution to the field of facial recognition security.

Di Domenico, N., Borghi, G., Franco, A., Maltoni, D. (2024). Improving Accomplice Detection in the Morphing Attack. MACHINE INTELLIGENCE RESEARCH, 22, 1-15 [10.1007/s11633-024-1533-1].

Improving Accomplice Detection in the Morphing Attack

Di Domenico, N.
Primo
;
Borghi, G.
Secondo
;
Franco, A.
Penultimo
;
Maltoni, D.
Ultimo
2024

Abstract

This paper addresses a critical security challenge in the field of automated face recognition, i.e., morphing attack. The paper introduces a novel differential morphing attack detection (D-MAD) system called ACIdA, which is specifically designed to overcome the limitations of existing D-MAD approaches. Traditional methods are effective when the morphed image and live capture are distinct, but they falter when the morphed image closely resembles the accomplice. This is a critical gap because detecting accomplice involvement in addition to the criminal one is essential for robust security. ACIdA′s impact is underscored by its innovative approach, which consists of three modules: One for classifying the type of attempt (bona fide, criminal, or accomplice verification attempt), and two others dedicated to analyzing identity and artifacts. This multi-faceted approach enables ACIdA to excel in scenarios where the morphed image does not equally represent both contributing subjects — a common and challenging situation in real-world applications. The paper′s extensive cross-dataset experimental evaluation demonstrates that ACIdA achieves state-of-the-art results in detecting accomplices, a crucial advancement for enhancing the security of face recognition systems. Furthermore, it maintains strong performance in identifying criminals, thereby addressing a significant vulnerability in current D-MAD methods and marking a substantial contribution to the field of facial recognition security.
2024
Di Domenico, N., Borghi, G., Franco, A., Maltoni, D. (2024). Improving Accomplice Detection in the Morphing Attack. MACHINE INTELLIGENCE RESEARCH, 22, 1-15 [10.1007/s11633-024-1533-1].
Di Domenico, N.; Borghi, G.; Franco, A.; Maltoni, D.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1005593
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact