We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the fundamental group Γ of a closed hyperbolic surface ∑ in PSL(2, ℝ)n. We identify the boundary with the sphere P((ℳℒ)n), where ℳℒ is the space of measured geodesic laminations on ∑. In the case n = 2, we give a geometric interpretation of the boundary as the space of homothety classes of ℝ2-mixed structures on ∑. We associate to such a structure a dual tree-graded space endowed with an ℝ2+-valued metric, which we show to be universal with respect to actions on products of two ℝ-trees with the given length spectrum.

Burger, M., Iozzi, A., Parreau, A., Pozzetti, M.B. (2025). Weyl chamber length compactification of the PSL(2, ℝ) × PSL(2, ℝ) maximal character variety. GLASGOW MATHEMATICAL JOURNAL, 67(1), 11-33 [10.1017/s0017089524000156].

Weyl chamber length compactification of the PSL(2, ℝ) × PSL(2, ℝ) maximal character variety

Pozzetti, Maria Beatrice
2025

Abstract

We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the fundamental group Γ of a closed hyperbolic surface ∑ in PSL(2, ℝ)n. We identify the boundary with the sphere P((ℳℒ)n), where ℳℒ is the space of measured geodesic laminations on ∑. In the case n = 2, we give a geometric interpretation of the boundary as the space of homothety classes of ℝ2-mixed structures on ∑. We associate to such a structure a dual tree-graded space endowed with an ℝ2+-valued metric, which we show to be universal with respect to actions on products of two ℝ-trees with the given length spectrum.
2025
Burger, M., Iozzi, A., Parreau, A., Pozzetti, M.B. (2025). Weyl chamber length compactification of the PSL(2, ℝ) × PSL(2, ℝ) maximal character variety. GLASGOW MATHEMATICAL JOURNAL, 67(1), 11-33 [10.1017/s0017089524000156].
Burger, Marc; Iozzi, Alessandra; Parreau, Anne; Pozzetti, Maria Beatrice
File in questo prodotto:
File Dimensione Formato  
SL2xSL2.pdf

Open Access dal 27/03/2025

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 485.31 kB
Formato Adobe PDF
485.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1005354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact