Ontology-based data access is an extensively studied paradigm aiming at improving query answers with the use of an "ontology". An ontology is a specification of a domain of interest, which, in this context, is described via a logical theory. As a form of logical entailment, ontology-mediated query answering is fully interpretable, which makes it possible to derive explanations for ontological query answers. This is a quite important aspect, as the fact that many recent AI systems mostly operating as black boxes has led to some serious concerns. In the literature, various works on explanations in the context of description logics (DLs) have appeared, mostly focusing on explaining concept subsumption and concept unsatisfiability in the ontologies. Some works on explaining query entailment in DLs have appeared as well, however, mainly dealing with inconsistency-tolerant semantics and, actually, non-entailment of the queries. Surprisingly, explaining ontological query entailment has received little attention for ontology languages based on existential rules. In fact, although DLs are popular formalisms to model ontologies, it is generally agreed that rule-based ontologies are well-suited for data-intensive applications, as they allow us to conveniently deal with higher-arity relations, which naturally occur in standard relational databases. The goal of this work is to close this gap, and study the problem of explaining query entailment in the context of existential rules ontologies in terms of minimal subsets of database facts. We provide a thorough complexity analysis for several decision problems associated with minimal explanations for various classes of existential rules, and for different complexity measures.

İlkan Ceylan, I., Lukasiewicz, T., Malizia, E., Vaicenavičius, A. (2025). Explanations for query answers under existential rules. ARTIFICIAL INTELLIGENCE, 341, 1-38 [10.1016/j.artint.2025.104294].

Explanations for query answers under existential rules

Enrico Malizia
;
2025

Abstract

Ontology-based data access is an extensively studied paradigm aiming at improving query answers with the use of an "ontology". An ontology is a specification of a domain of interest, which, in this context, is described via a logical theory. As a form of logical entailment, ontology-mediated query answering is fully interpretable, which makes it possible to derive explanations for ontological query answers. This is a quite important aspect, as the fact that many recent AI systems mostly operating as black boxes has led to some serious concerns. In the literature, various works on explanations in the context of description logics (DLs) have appeared, mostly focusing on explaining concept subsumption and concept unsatisfiability in the ontologies. Some works on explaining query entailment in DLs have appeared as well, however, mainly dealing with inconsistency-tolerant semantics and, actually, non-entailment of the queries. Surprisingly, explaining ontological query entailment has received little attention for ontology languages based on existential rules. In fact, although DLs are popular formalisms to model ontologies, it is generally agreed that rule-based ontologies are well-suited for data-intensive applications, as they allow us to conveniently deal with higher-arity relations, which naturally occur in standard relational databases. The goal of this work is to close this gap, and study the problem of explaining query entailment in the context of existential rules ontologies in terms of minimal subsets of database facts. We provide a thorough complexity analysis for several decision problems associated with minimal explanations for various classes of existential rules, and for different complexity measures.
2025
İlkan Ceylan, I., Lukasiewicz, T., Malizia, E., Vaicenavičius, A. (2025). Explanations for query answers under existential rules. ARTIFICIAL INTELLIGENCE, 341, 1-38 [10.1016/j.artint.2025.104294].
İlkan Ceylan, İsmail; Lukasiewicz, Thomas; Malizia, Enrico; Vaicenavičius, Andrius
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S000437022500013X-main.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.6 MB
Formato Adobe PDF
2.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1004929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact