Metal–organic framework (MOF) nanoparticles have attracted widespread attention as lubrication additives due to their tunable structures and surface effects. However, their solid lubrication properties have been rarely explored. This work introduces the positive role of moisture in solid lubrication in the case of a newly described Ti-based MOF (COK-47) powder. COK-47 achieves an 8.5-fold friction reduction compared to AISI 304 steel-on-steel sliding under room air. In addition, COK-47 maintains a similarly low coefficient of friction (0.1–0.2) on various counterbodies, including Al2O3, ZrO2, SiC, and Si3N4. Notably, compared to other widely studied MOFs (ZIF-8, ZIF-67) and 2D materials powder (MXene, TMD, rGO), COK-47 exhibits the lowest friction (≈0.1) under the same experimental settings. Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscope, and transmission electron microscopy indicate that the tribofilm is an amorphous film obtained by hydrolysis of COK-47 in the air with moisture. Density functional theory further confirms that water catalyzes the decomposition of COK-47, a crucial step in forming the tribofilm. This study demonstrates the idea of utilizing MOF and water-assisted lubrication mechanisms. It provides new insights into MOF applications in tribology and highlights interdisciplinary contributions of mechanical engineering and chemistry.

Li, H., Sui, X., Ayala, P., Marquis, E., Rabl, H., Ertl, A., et al. (2025). Advanced Solid Lubrication with COK‐47: Mechanistic Insights on the Role of Water and Performance Evaluation. ADVANCED SCIENCE, n/a(2415268), 1-12 [10.1002/advs.202415268].

Advanced Solid Lubrication with COK‐47: Mechanistic Insights on the Role of Water and Performance Evaluation

Marquis, Edoardo;Righi, Maria Clelia;
2025

Abstract

Metal–organic framework (MOF) nanoparticles have attracted widespread attention as lubrication additives due to their tunable structures and surface effects. However, their solid lubrication properties have been rarely explored. This work introduces the positive role of moisture in solid lubrication in the case of a newly described Ti-based MOF (COK-47) powder. COK-47 achieves an 8.5-fold friction reduction compared to AISI 304 steel-on-steel sliding under room air. In addition, COK-47 maintains a similarly low coefficient of friction (0.1–0.2) on various counterbodies, including Al2O3, ZrO2, SiC, and Si3N4. Notably, compared to other widely studied MOFs (ZIF-8, ZIF-67) and 2D materials powder (MXene, TMD, rGO), COK-47 exhibits the lowest friction (≈0.1) under the same experimental settings. Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscope, and transmission electron microscopy indicate that the tribofilm is an amorphous film obtained by hydrolysis of COK-47 in the air with moisture. Density functional theory further confirms that water catalyzes the decomposition of COK-47, a crucial step in forming the tribofilm. This study demonstrates the idea of utilizing MOF and water-assisted lubrication mechanisms. It provides new insights into MOF applications in tribology and highlights interdisciplinary contributions of mechanical engineering and chemistry.
2025
Li, H., Sui, X., Ayala, P., Marquis, E., Rabl, H., Ertl, A., et al. (2025). Advanced Solid Lubrication with COK‐47: Mechanistic Insights on the Role of Water and Performance Evaluation. ADVANCED SCIENCE, n/a(2415268), 1-12 [10.1002/advs.202415268].
Li, Hanglin; Sui, Xudong; Ayala, Pablo; Marquis, Edoardo; Rabl, Hannah; Ertl, Adrian; Bilotto, Pierluigi; Shang, Yazhuo; Li, Jiusheng; Xu, Lu; Righi, ...espandi
File in questo prodotto:
File Dimensione Formato  
8_Advanced_Science_COK‐47_2025.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 8.91 MB
Formato Adobe PDF
8.91 MB Adobe PDF Visualizza/Apri
advs10921-sup-0001-suppmat.docx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 9.78 MB
Formato Microsoft Word XML
9.78 MB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1004854
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact