In this paper we revise a popular alternative for estimating Poisson regression models in a Bayesian framework and discuss possible pitfalls tied to data features. The MCMC algorithms are based on augmenting the model via the introduction of auxiliary variables. This leads to a model linear in the regression parameters with errors following a Gumbel or a log-Gamma distribution depending on the augmentation strategy. Such distributions are approximated by a Gaussian Mixture in order to favor standard MCMC sampling with Gibbs steps after augmentation. We show situations when such an approximation deteriorates and causes non-convergence of the algorithm, discussing how this can be detected while the algorithm is running.

Gardini, A., Greco, F., Trivisano, C. (2025). Investigating Auxiliary Mixture Sampling for Poisson Regression Models [10.1007/978-3-031-64447-4_12].

Investigating Auxiliary Mixture Sampling for Poisson Regression Models

Aldo Gardini
;
Fedele Greco;Carlo Trivisano
2025

Abstract

In this paper we revise a popular alternative for estimating Poisson regression models in a Bayesian framework and discuss possible pitfalls tied to data features. The MCMC algorithms are based on augmenting the model via the introduction of auxiliary variables. This leads to a model linear in the regression parameters with errors following a Gumbel or a log-Gamma distribution depending on the augmentation strategy. Such distributions are approximated by a Gaussian Mixture in order to favor standard MCMC sampling with Gibbs steps after augmentation. We show situations when such an approximation deteriorates and causes non-convergence of the algorithm, discussing how this can be detected while the algorithm is running.
2025
Methodological and Applied Statistics and Demography IV. SIS 2024. Italian Statistical Society Series on Advances in Statistics.
71
76
Gardini, A., Greco, F., Trivisano, C. (2025). Investigating Auxiliary Mixture Sampling for Poisson Regression Models [10.1007/978-3-031-64447-4_12].
Gardini, Aldo; Greco, Fedele; Trivisano, Carlo
File in questo prodotto:
File Dimensione Formato  
Gardini_et_al_SIS.pdf

Open Access dal 22/07/2025

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 377.7 kB
Formato Adobe PDF
377.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1004699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact