The goal of this expository paper is to give a quick introduction to q-deformations of semisimple Lie groups. We discuss principally the rank one examples of Uq(sl2), O(SUq(2)), D(SLq(2, ℂ)) and related algebras. We treat quantized enveloping algebras, representations of Uq(sl2), generalities on Hopf algebras and quantum groups, ∗-structures, quantized algebras of functions on q-deformed compact semisimple groups, the Peter-Weyl theorem, ∗-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations of SLq(2, ℂ), the Plancherel formula for SLq(2, ℂ). This exposition is expanding the material treated in a series of lectures given by the second author at the CaLISTA CA 21100 Training School, “Quantum Groups and Noncommutative Geometry in Prague” in 2023.

Fioresi, R., Yuncken, R. (2024). QUANTIZED SEMISIMPLE LIE GROUPS. ARCHIVUM MATHEMATICUM, 60(5), 311-349 [10.5817/AM2024-5-311].

QUANTIZED SEMISIMPLE LIE GROUPS

Fioresi R.
Conceptualization
;
2024

Abstract

The goal of this expository paper is to give a quick introduction to q-deformations of semisimple Lie groups. We discuss principally the rank one examples of Uq(sl2), O(SUq(2)), D(SLq(2, ℂ)) and related algebras. We treat quantized enveloping algebras, representations of Uq(sl2), generalities on Hopf algebras and quantum groups, ∗-structures, quantized algebras of functions on q-deformed compact semisimple groups, the Peter-Weyl theorem, ∗-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations of SLq(2, ℂ), the Plancherel formula for SLq(2, ℂ). This exposition is expanding the material treated in a series of lectures given by the second author at the CaLISTA CA 21100 Training School, “Quantum Groups and Noncommutative Geometry in Prague” in 2023.
2024
Fioresi, R., Yuncken, R. (2024). QUANTIZED SEMISIMPLE LIE GROUPS. ARCHIVUM MATHEMATICUM, 60(5), 311-349 [10.5817/AM2024-5-311].
Fioresi, R.; Yuncken, R.
File in questo prodotto:
File Dimensione Formato  
archivum2024.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 708.44 kB
Formato Adobe PDF
708.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1004492
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact