Recognizing already explored places (a.k.a. place recognition) is a fundamental task in Simultaneous Localization and Mapping (SLAM) to enable robot relocalization and loop closure detection. In topological SLAM the recognition takes place by comparing a signature (or feature vector) associated to the current node with the signatures of the nodes in the known map. However, as the number of nodes increases, matching the current node signature against all the existing ones becomes inefficient and thwarts real-time navigation. In this paper we propose a novel approach to pre-select a subset of map nodes for place recognition. The map nodes are clustered during exploration and each cluster is associated with a region. The region labels become the prediction targets of a deep neural network and, during navigation, only the nodes associated with the regions predicted with high probability are considered for matching. While the proposed technique can be integrated in different SLAM approaches, in this work we describe an effective integration with RTAB-Map (a popular framework for real-time topological SLAM) which allowed us to design and run several experiments to demonstrate its effectiveness.

Scucchia, M., Maltoni, D. (2024). Region Prediction for Efficient Robot Localization on Large Maps. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND : Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-59057-3_16].

Region Prediction for Efficient Robot Localization on Large Maps

Scucchia, Matteo
;
Maltoni, Davide
2024

Abstract

Recognizing already explored places (a.k.a. place recognition) is a fundamental task in Simultaneous Localization and Mapping (SLAM) to enable robot relocalization and loop closure detection. In topological SLAM the recognition takes place by comparing a signature (or feature vector) associated to the current node with the signatures of the nodes in the known map. However, as the number of nodes increases, matching the current node signature against all the existing ones becomes inefficient and thwarts real-time navigation. In this paper we propose a novel approach to pre-select a subset of map nodes for place recognition. The map nodes are clustered during exploration and each cluster is associated with a region. The region labels become the prediction targets of a deep neural network and, during navigation, only the nodes associated with the regions predicted with high probability are considered for matching. While the proposed technique can be integrated in different SLAM approaches, in this work we describe an effective integration with RTAB-Map (a popular framework for real-time topological SLAM) which allowed us to design and run several experiments to demonstrate its effectiveness.
2024
Communications in Computer and Information Science
244
259
Scucchia, M., Maltoni, D. (2024). Region Prediction for Efficient Robot Localization on Large Maps. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND : Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-59057-3_16].
Scucchia, Matteo; Maltoni, Davide
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1003817
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact