We show that, when sp > N, the sharp Hardy constant h(s,p) of the punctured space R-N \ {0} in the Sobolev-Slobodeckii space provides an optimal lower bound for the Hardy constant h(s,p)(Omega) of an open set Omega subset of R-N. The proof exploits the characterization of Hardy's inequality in the fractional setting in terms of positive local weak supersolutions of the relevant Euler-Lagrange equation and relies on the construction of suitable supersolutions by means of the distance function from the boundary of Omega. Moreover, we compute the limit of h(s,p) as s NE arrow 1, as well as the limit when p NE arrow infinity. Finally, we apply our results to establish a lower bound for the non-local eigenvalue lambda(s,p)(Omega) in terms of h(s,p) when sp > N, which, in turn, gives an improved Cheeger inequality whose constant does not vanish as p NE arrow infinity.

Cinti, E., Prinari, F. (2024). On fractional Hardy-type inequalities in general open sets. ESAIM. COCV, 30, 1-26 [10.1051/cocv/2024066].

On fractional Hardy-type inequalities in general open sets

Cinti E.;Prinari F.
2024

Abstract

We show that, when sp > N, the sharp Hardy constant h(s,p) of the punctured space R-N \ {0} in the Sobolev-Slobodeckii space provides an optimal lower bound for the Hardy constant h(s,p)(Omega) of an open set Omega subset of R-N. The proof exploits the characterization of Hardy's inequality in the fractional setting in terms of positive local weak supersolutions of the relevant Euler-Lagrange equation and relies on the construction of suitable supersolutions by means of the distance function from the boundary of Omega. Moreover, we compute the limit of h(s,p) as s NE arrow 1, as well as the limit when p NE arrow infinity. Finally, we apply our results to establish a lower bound for the non-local eigenvalue lambda(s,p)(Omega) in terms of h(s,p) when sp > N, which, in turn, gives an improved Cheeger inequality whose constant does not vanish as p NE arrow infinity.
2024
Cinti, E., Prinari, F. (2024). On fractional Hardy-type inequalities in general open sets. ESAIM. COCV, 30, 1-26 [10.1051/cocv/2024066].
Cinti, E.; Prinari, F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1002399
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact