Four isosorbide-based photocurable resins were designed to reveal correlations between the composition and chemical structure, digital light processing (DLP) three-dimensional (3D) printability, thermoset properties, and recyclability. Especially, the role of functional groups, i.e., the concentration of ester groups vs the combination of ester and imine functionalities, in the recyclability of the resins was investigated. The resins consisted of methacrylated isosorbide alone or in combination with methacrylated vanillin or a flexible methacrylated vanillin Schiff-base. The composition of the resins significantly affected their 3D printability as well as the physical and chemical properties of the resulting thermosets. The results indicated the potential of methacrylated isosorbide to confer rigidity to thermosets with some negative effects on the printing quality and solvent-resistance properties. An increase in the methacrylated vanillin concentration in the resin enabled us to overcome these drawbacks, leading, however, to thermosets with lower thermal stability. The replacement of methacrylated vanillin with the methacrylated Schiff-base resin decreased the rigidity of the networks, ensuring, on the other hand, improved solvent-resistance properties. The results highlighted an almost complete preservation of the elastic modulus after the reprocessing or chemical recycling of the ester-imine thermosets, thanks to the presence of two distinct dynamic covalent bonds in the network; however, the concentration of the ester functions in the ester thermosets played a significant role in the success of the chemical recycling procedure.
Liguori, A., Oliva, E., Sangermano, M., Hakkarainen, M. (2023). Digital Light Processing 3D Printing of Isosorbide- and Vanillin-Based Ester and Ester–Imine Thermosets: Structure–Property Recyclability Relationships. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 11(39), 14601-14613 [10.1021/acssuschemeng.3c04362].
Digital Light Processing 3D Printing of Isosorbide- and Vanillin-Based Ester and Ester–Imine Thermosets: Structure–Property Recyclability Relationships
Liguori, AnnaPrimo
;
2023
Abstract
Four isosorbide-based photocurable resins were designed to reveal correlations between the composition and chemical structure, digital light processing (DLP) three-dimensional (3D) printability, thermoset properties, and recyclability. Especially, the role of functional groups, i.e., the concentration of ester groups vs the combination of ester and imine functionalities, in the recyclability of the resins was investigated. The resins consisted of methacrylated isosorbide alone or in combination with methacrylated vanillin or a flexible methacrylated vanillin Schiff-base. The composition of the resins significantly affected their 3D printability as well as the physical and chemical properties of the resulting thermosets. The results indicated the potential of methacrylated isosorbide to confer rigidity to thermosets with some negative effects on the printing quality and solvent-resistance properties. An increase in the methacrylated vanillin concentration in the resin enabled us to overcome these drawbacks, leading, however, to thermosets with lower thermal stability. The replacement of methacrylated vanillin with the methacrylated Schiff-base resin decreased the rigidity of the networks, ensuring, on the other hand, improved solvent-resistance properties. The results highlighted an almost complete preservation of the elastic modulus after the reprocessing or chemical recycling of the ester-imine thermosets, thanks to the presence of two distinct dynamic covalent bonds in the network; however, the concentration of the ester functions in the ester thermosets played a significant role in the success of the chemical recycling procedure.File | Dimensione | Formato | |
---|---|---|---|
liguori-et-al-2023-digital-light-processing-3d-printing-of-isosorbide-and-vanillin-based-ester-and-ester-imine.pdf
accesso aperto
Descrizione: Articolo in rivista
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
7.44 MB
Formato
Adobe PDF
|
7.44 MB | Adobe PDF | Visualizza/Apri |
sc3c04362_si_001.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
552.66 kB
Formato
Adobe PDF
|
552.66 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.