We prove the Morrison-Kawamata cone conjecture for projective primitive symplectic varieties with Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q}$$\end{document}-factorial and terminal singularities with b2 >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_2\ge 5$$\end{document}, from which we derive for instance the finiteness of minimal models of such varieties, up to isomorphisms. To prove the conjecture we establish along the way some results on the monodromy group which may be interesting in their own right, such as the fact that reflections in prime exceptional divisors are integral Hodge monodromy operators which, together with monodromy operators provided by birational transformations, yield a semidirect product decomposition of the monodromy group of Hodge isometries.

Lehn, C., Mongardi, G., Pacienza, G. (2024). The Morrison–Kawamata cone conjecture for singular symplectic varieties. SELECTA MATHEMATICA, 30(4), 1-36 [10.1007/s00029-024-00969-9].

The Morrison–Kawamata cone conjecture for singular symplectic varieties

Lehn C.;Mongardi G.
;
Pacienza G.
2024

Abstract

We prove the Morrison-Kawamata cone conjecture for projective primitive symplectic varieties with Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Q}$$\end{document}-factorial and terminal singularities with b2 >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_2\ge 5$$\end{document}, from which we derive for instance the finiteness of minimal models of such varieties, up to isomorphisms. To prove the conjecture we establish along the way some results on the monodromy group which may be interesting in their own right, such as the fact that reflections in prime exceptional divisors are integral Hodge monodromy operators which, together with monodromy operators provided by birational transformations, yield a semidirect product decomposition of the monodromy group of Hodge isometries.
2024
Lehn, C., Mongardi, G., Pacienza, G. (2024). The Morrison–Kawamata cone conjecture for singular symplectic varieties. SELECTA MATHEMATICA, 30(4), 1-36 [10.1007/s00029-024-00969-9].
Lehn, C.; Mongardi, G.; Pacienza, G.
File in questo prodotto:
File Dimensione Formato  
Cone_Conjecture-2.pdf

embargo fino al 08/09/2025

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 478.55 kB
Formato Adobe PDF
478.55 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1002071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact