The visual system operates rhythmically, through timely coordinated perceptual and attentional processes, involving coexisting patterns in the alpha range (7-13 Hz) at similar to 10 Hz, and theta (3-6 Hz) range, respectively. Here we aimed to disambiguate whether variations in task requirements, in terms of attentional demand and side of target presentation, might influence the occurrence of either perceptual or attentional components in behavioral visual performance, also uncovering possible differences in the sampling mechanisms of the two cerebral hemispheres. To this aim, visuospatial performance was densely sampled in two versions of a visual detection task where the side of target presentation was fixed (Task 1), with participants monitoring one single hemifield, or randomly varying across trials, with participants monitoring both hemifields simultaneously (Task 2). Performance was analyzed through spectral decomposition, to reveal behavioral oscillatory patterns. For Task 1, when attentional resources where focused on one hemifield only, the results revealed an oscillatory pattern fluctuating at similar to 10 Hz and similar to 6-9 Hz, for stimuli presented to the left and the right hemifield, respectively, possibly representing a perceptual sampling mechanism with different efficiency within the left and the right hemispheres. For Task 2, when attentional resources were simultaneously deployed to the two hemifields, a similar to 5 Hz rhythm emerged both for stimuli presented to the left and the right, reflecting an attentional sampling process, equally supported by the two hemispheres. Overall, the results suggest that distinct perceptual and attentional sampling mechanisms operate at different oscillatory frequencies and their prevalence and hemispheric lateralization depends on task requirements.
Gallina, J., Ronconi, L., Marsicano, G., Bertini, C. (2024). Alpha and theta rhythm support perceptual and attentional sampling in vision. CORTEX, 177, 84-99 [10.1016/j.cortex.2024.04.020].
Alpha and theta rhythm support perceptual and attentional sampling in vision
Gallina J.;Marsicano G.;Bertini C.
2024
Abstract
The visual system operates rhythmically, through timely coordinated perceptual and attentional processes, involving coexisting patterns in the alpha range (7-13 Hz) at similar to 10 Hz, and theta (3-6 Hz) range, respectively. Here we aimed to disambiguate whether variations in task requirements, in terms of attentional demand and side of target presentation, might influence the occurrence of either perceptual or attentional components in behavioral visual performance, also uncovering possible differences in the sampling mechanisms of the two cerebral hemispheres. To this aim, visuospatial performance was densely sampled in two versions of a visual detection task where the side of target presentation was fixed (Task 1), with participants monitoring one single hemifield, or randomly varying across trials, with participants monitoring both hemifields simultaneously (Task 2). Performance was analyzed through spectral decomposition, to reveal behavioral oscillatory patterns. For Task 1, when attentional resources where focused on one hemifield only, the results revealed an oscillatory pattern fluctuating at similar to 10 Hz and similar to 6-9 Hz, for stimuli presented to the left and the right hemifield, respectively, possibly representing a perceptual sampling mechanism with different efficiency within the left and the right hemispheres. For Task 2, when attentional resources were simultaneously deployed to the two hemifields, a similar to 5 Hz rhythm emerged both for stimuli presented to the left and the right, reflecting an attentional sampling process, equally supported by the two hemispheres. Overall, the results suggest that distinct perceptual and attentional sampling mechanisms operate at different oscillatory frequencies and their prevalence and hemispheric lateralization depends on task requirements.File | Dimensione | Formato | |
---|---|---|---|
Gallina et al 2024_percept_oscill_Cortex.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale / Version Of Record
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.