Purpose - In this study, response surface methodology (RSM) is applied to a three-point bending stiffness analysis of low-cost material (PLA) specimens printed using FDM technology to analyze the performance of different internal lattice structures (Octet and IsoTruss principally). The purpose of this study is to extend the definition from a discrete (lattice) model to an analytical one for its use in subsequent design phases, capable of optimizing the type of cell to be used and its defining parameters to find the best stiffness-to-weight ratio. Design/methodology/approach - The representative function of their mechanical behavior is extrapolated through a two-variable polynomial model based on the cell size and the thickness of the beam elements characterizing it. The polynomial is obtained thanks to several tests performed according to the scheme of RSM. An analysis on the estimation errors due to discontinuities in the physical specimens is also conducted. Physical tests applied to the specimens showed some divergences from the virtual (ideal) behavior of the specimens. Findings - The study allowed to validate the RSM models proposed to predict the behavior of the system as the size, thickness and type of cells vary. Changes in stiffness and weight of specimens follow linear and quadratic models, respectively. This generally allows to find optimal design points where the stiffness-to-weight ratio is at its highest. Originality/value - Although the literature provides numerous references to studies characterizing and parameterizing lattice structures, the industrial/practical applications concerning lattice structures are often still detached from theoretical research and limited to achieving functioning models rather than optimal ones. The approach here described is also aimed at overcoming this limitation. The software used for the design is nTop. Subsequent three-point bending tests have validated the reliability of the model derived from the method's application.
Donnici, G., Freddi, M., Liverani, A. (2024). RSM applied to lattice patterns for stiffness optimization. RAPID PROTOTYPING JOURNAL, 30(11), 345-356 [10.1108/RPJ-03-2024-0134].
RSM applied to lattice patterns for stiffness optimization
Donnici G.;Freddi M.
;Liverani A.
2024
Abstract
Purpose - In this study, response surface methodology (RSM) is applied to a three-point bending stiffness analysis of low-cost material (PLA) specimens printed using FDM technology to analyze the performance of different internal lattice structures (Octet and IsoTruss principally). The purpose of this study is to extend the definition from a discrete (lattice) model to an analytical one for its use in subsequent design phases, capable of optimizing the type of cell to be used and its defining parameters to find the best stiffness-to-weight ratio. Design/methodology/approach - The representative function of their mechanical behavior is extrapolated through a two-variable polynomial model based on the cell size and the thickness of the beam elements characterizing it. The polynomial is obtained thanks to several tests performed according to the scheme of RSM. An analysis on the estimation errors due to discontinuities in the physical specimens is also conducted. Physical tests applied to the specimens showed some divergences from the virtual (ideal) behavior of the specimens. Findings - The study allowed to validate the RSM models proposed to predict the behavior of the system as the size, thickness and type of cells vary. Changes in stiffness and weight of specimens follow linear and quadratic models, respectively. This generally allows to find optimal design points where the stiffness-to-weight ratio is at its highest. Originality/value - Although the literature provides numerous references to studies characterizing and parameterizing lattice structures, the industrial/practical applications concerning lattice structures are often still detached from theoretical research and limited to achieving functioning models rather than optimal ones. The approach here described is also aimed at overcoming this limitation. The software used for the design is nTop. Subsequent three-point bending tests have validated the reliability of the model derived from the method's application.File | Dimensione | Formato | |
---|---|---|---|
10-1108_rpj-03-2024-0134.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Creative commons
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.