In the Tutor Allocation Problem, the objective is to assign a set of tutors to a set of workshops in order to maximize tutors’ preferences. The problem is solved every year by many universities, each having its own specific set of constraints. In this work, we study the tutor allocation in the School of Mathematics at the University of Edinburgh, and solve it with an integer linear programming model. We tested the model on the 2019/2020 case, obtaining a significant improvement with respect to the manual assignment in use and we showed that such improvement could be maintained while optimizing other key metrics such as load balance among groups of tutors and total number of courses assigned. Further tests on randomly created instances show that the model can be used to address cases of broad interest. We also provide meaningful insights on how input parameters, such as the number of workshop locations and the length of the tutors’ preference list, might affect the performance of the model and the average number of preferences satisfied.
Caselli, G., Delorme, M., Iori, M. (2022). Integer Linear Programming for the Tutor Allocation Problem: A practical case in a British University. EXPERT SYSTEMS WITH APPLICATIONS, 187, 1-9 [10.1016/j.eswa.2021.115967].
Integer Linear Programming for the Tutor Allocation Problem: A practical case in a British University
Delorme M.;
2022
Abstract
In the Tutor Allocation Problem, the objective is to assign a set of tutors to a set of workshops in order to maximize tutors’ preferences. The problem is solved every year by many universities, each having its own specific set of constraints. In this work, we study the tutor allocation in the School of Mathematics at the University of Edinburgh, and solve it with an integer linear programming model. We tested the model on the 2019/2020 case, obtaining a significant improvement with respect to the manual assignment in use and we showed that such improvement could be maintained while optimizing other key metrics such as load balance among groups of tutors and total number of courses assigned. Further tests on randomly created instances show that the model can be used to address cases of broad interest. We also provide meaningful insights on how input parameters, such as the number of workshop locations and the length of the tutors’ preference list, might affect the performance of the model and the average number of preferences satisfied.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.