: Immune-based combinations are the cornerstone of the first-line treatment of metastatic renal cell carcinoma patients, leading to outstanding outcomes. Nevertheless, primary resistance and disease progression is a critical clinical challenge. To properly address this issue, it is pivotal to understand the mechanisms of resistance to immunotherapy and tyrosine kinase inhibitors, that tumor eventually develop under treatment. In this review of the literature, we aim at exploring resistance mechanisms arising in patients treated with first-line immune-based combinations in order to understand the biological pattern that should be investigated to overcome them. In more detail, mechanisms of resistance to nivolumab and pembrolizumab are divided into intrinsic to cancer cells and extrinsic (stromal or immune cells). Regarding axitinib, the increased expression of Nuclear protein 1 (NUPR1) or decreased levels of insulin receptor (INSR) characterize resistant cells. The secretion of non-VEGF pro-angiogenic factors, such as PDGF-BB, IL-1β, MMP-9, Gro-α, IL-8, IL-6, and CCL-2, can lead to resistance to cabozantinib. The reactivation of pathways previously targeted by lenvatinib or the activation of alternative pathways, such as EGFR-PAK2-ERK pathway, underlie the development of resistance to lenvatinib. Exploring resistance mechanism that arise during first-line therapy can lead to the development of treatment strategy able to overcome them in order to improve duration of response and patients outcomes.

Santoni, M., Mollica, V., Rizzo, A., Massari, F. (2025). Dynamics of resistance to immunotherapy and TKI in patients with advanced renal cell carcinoma. CANCER TREATMENT REVIEWS, 133, 1-6 [10.1016/j.ctrv.2025.102881].

Dynamics of resistance to immunotherapy and TKI in patients with advanced renal cell carcinoma

Massari, Francesco
Ultimo
2025

Abstract

: Immune-based combinations are the cornerstone of the first-line treatment of metastatic renal cell carcinoma patients, leading to outstanding outcomes. Nevertheless, primary resistance and disease progression is a critical clinical challenge. To properly address this issue, it is pivotal to understand the mechanisms of resistance to immunotherapy and tyrosine kinase inhibitors, that tumor eventually develop under treatment. In this review of the literature, we aim at exploring resistance mechanisms arising in patients treated with first-line immune-based combinations in order to understand the biological pattern that should be investigated to overcome them. In more detail, mechanisms of resistance to nivolumab and pembrolizumab are divided into intrinsic to cancer cells and extrinsic (stromal or immune cells). Regarding axitinib, the increased expression of Nuclear protein 1 (NUPR1) or decreased levels of insulin receptor (INSR) characterize resistant cells. The secretion of non-VEGF pro-angiogenic factors, such as PDGF-BB, IL-1β, MMP-9, Gro-α, IL-8, IL-6, and CCL-2, can lead to resistance to cabozantinib. The reactivation of pathways previously targeted by lenvatinib or the activation of alternative pathways, such as EGFR-PAK2-ERK pathway, underlie the development of resistance to lenvatinib. Exploring resistance mechanism that arise during first-line therapy can lead to the development of treatment strategy able to overcome them in order to improve duration of response and patients outcomes.
2025
Santoni, M., Mollica, V., Rizzo, A., Massari, F. (2025). Dynamics of resistance to immunotherapy and TKI in patients with advanced renal cell carcinoma. CANCER TREATMENT REVIEWS, 133, 1-6 [10.1016/j.ctrv.2025.102881].
Santoni, Matteo; Mollica, Veronica; Rizzo, Alessandro; Massari, Francesco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1001306
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact