The present study investigated the reaction to fire of bio-based boards for indoor applications made of A. donax and hazelnut shells as aggregates. A sodium silicate solution was employed as the adhesive due to its several advantages. Among others, the possibility of moderating some of the main drawbacks of bio-based building composites, such as the resistance to fire. The considered materials were analysed both individually, to test their inherent properties, and when integrated into the composites, ensuring considerations about materials' influence on the final products’ properties. Two different test methods, using a cone calorimeter, were considered and performed. The results showed that the sodium silicate solution avoided flaming and smoking, in case of a constant heat application with and without an igniter (spark), demonstrating the benefit of its use in this type of bio-based composites. Overall, the particleboards demonstrated their ability to comply with fire behaviour consistent with the Class A1 requirements, while the bio-components on themselves were characterized by an intermediate fire risk propensity. Thus, the present study provided an effective solution to avoid one of the main drawbacks of bio-based composites. It demonstrated the feasibility of employing the proposed bio-based boards as indoor coating, with no risk to human life in case of fire.
Cintura, E., Faria, P., Molari, L., Mazzocchetti, L., Dalle Donne, M., Giorgini, L., et al. (2024). Bio-based boards made of hazelnut shell and A. donax for indoor applications - A solution with good performance in case of fire. JOURNAL OF BUILDING ENGINEERING, 95, 1-18 [10.1016/j.jobe.2024.110274].
Bio-based boards made of hazelnut shell and A. donax for indoor applications - A solution with good performance in case of fire
Cintura E.
;Molari L.;Mazzocchetti L.;Dalle Donne M.;Giorgini L.;
2024
Abstract
The present study investigated the reaction to fire of bio-based boards for indoor applications made of A. donax and hazelnut shells as aggregates. A sodium silicate solution was employed as the adhesive due to its several advantages. Among others, the possibility of moderating some of the main drawbacks of bio-based building composites, such as the resistance to fire. The considered materials were analysed both individually, to test their inherent properties, and when integrated into the composites, ensuring considerations about materials' influence on the final products’ properties. Two different test methods, using a cone calorimeter, were considered and performed. The results showed that the sodium silicate solution avoided flaming and smoking, in case of a constant heat application with and without an igniter (spark), demonstrating the benefit of its use in this type of bio-based composites. Overall, the particleboards demonstrated their ability to comply with fire behaviour consistent with the Class A1 requirements, while the bio-components on themselves were characterized by an intermediate fire risk propensity. Thus, the present study provided an effective solution to avoid one of the main drawbacks of bio-based composites. It demonstrated the feasibility of employing the proposed bio-based boards as indoor coating, with no risk to human life in case of fire.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2352710224018424-main.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
6.79 MB
Formato
Adobe PDF
|
6.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.