Computing network paths under worst-case delay constraints has been the subject of abundant literature in the past two decades. Assuming Weighted Fair Queueing scheduling at the nodes, this translates to computing paths and reserving rates at each link. The problem is NP-hard in general, even for a single path; hence polynomial-time heuristics have been proposed in the past, that either assume equal rates at each node, or compute the path heuristically and then allocate the rates optimally on the given path. In this paper we show that the above heuristics, albeit finding optimal solutions quite often, can lead to failing of paths at very low loads, and that this could be avoided by solving the problem, i.e., path computation and rate allocation, jointly at optimality. This is possible by modeling the problem as a mixed-integer second-order cone program and solving it optimally in split-second times for relatively large networks on commodity hardware; this approach can also be easily turned into a heuristic one, trading a negligible increase in blocking probability for one order of magnitude of computation time. Extensive simulations show that these methods are feasible in today's ISPs networks and they significantly outperform the existing schemes in terms of blocking probability.

Frangioni, A., Galli, L., Stea, G. (2015). Optimal joint path computation and rate allocation for real-time traffic. COMPUTER JOURNAL, 58(6), 1416-1430 [10.1093/comjnl/bxu053].

Optimal joint path computation and rate allocation for real-time traffic

GALLI, LAURA;
2015

Abstract

Computing network paths under worst-case delay constraints has been the subject of abundant literature in the past two decades. Assuming Weighted Fair Queueing scheduling at the nodes, this translates to computing paths and reserving rates at each link. The problem is NP-hard in general, even for a single path; hence polynomial-time heuristics have been proposed in the past, that either assume equal rates at each node, or compute the path heuristically and then allocate the rates optimally on the given path. In this paper we show that the above heuristics, albeit finding optimal solutions quite often, can lead to failing of paths at very low loads, and that this could be avoided by solving the problem, i.e., path computation and rate allocation, jointly at optimality. This is possible by modeling the problem as a mixed-integer second-order cone program and solving it optimally in split-second times for relatively large networks on commodity hardware; this approach can also be easily turned into a heuristic one, trading a negligible increase in blocking probability for one order of magnitude of computation time. Extensive simulations show that these methods are feasible in today's ISPs networks and they significantly outperform the existing schemes in terms of blocking probability.
2015
Frangioni, A., Galli, L., Stea, G. (2015). Optimal joint path computation and rate allocation for real-time traffic. COMPUTER JOURNAL, 58(6), 1416-1430 [10.1093/comjnl/bxu053].
Frangioni, Antonio; Galli, Laura; Stea, Giovanni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1000227
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact