In this brief note we show that under a volume non-preserving scaling it is possible to recover the basics for a regularity theory regarding local weak solutions to the fully anisotropic equation 1∂tu=∑i=1N∂i(|∂iu|pi−2∂iu)inΩT=Ω×(−T,T),withΩ⊂⊂ℝN.We characterize self-similar solutions regarding this particular scaling and we show that semi-continuity for solutions to this equation is a consequence of a simple property that is itself invariant under scaling.

Ciani, S., Guarnotta, U., Vespri, V. (2023). On a Particular Scaling for the Prototype Anisotropic p-Laplacian. Cham : Birkhäuser [10.1007/978-3-031-20021-2_15].

On a Particular Scaling for the Prototype Anisotropic p-Laplacian

Ciani, Simone
;
Vespri, Vincenzo
2023

Abstract

In this brief note we show that under a volume non-preserving scaling it is possible to recover the basics for a regularity theory regarding local weak solutions to the fully anisotropic equation 1∂tu=∑i=1N∂i(|∂iu|pi−2∂iu)inΩT=Ω×(−T,T),withΩ⊂⊂ℝN.We characterize self-similar solutions regarding this particular scaling and we show that semi-continuity for solutions to this equation is a consequence of a simple property that is itself invariant under scaling.
2023
Recent Advances in Mathematical Analysis
289
308
Ciani, S., Guarnotta, U., Vespri, V. (2023). On a Particular Scaling for the Prototype Anisotropic p-Laplacian. Cham : Birkhäuser [10.1007/978-3-031-20021-2_15].
Ciani, Simone; Guarnotta, Umberto; Vespri, Vincenzo
File in questo prodotto:
File Dimensione Formato  
corrected version- Ciani Guarnotta Vespri.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 459.28 kB
Formato Adobe PDF
459.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/991006
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact