Mobile cellular networks play a pivotal role in emerging Internet of Things (IoT) applications, such as vehicular collision alerts, malfunctioning alerts in Industry-4.0 manufacturing plants, periodic distribution of coordination information for swarming robots or platooning vehicles, etc. All these applications are characterized by the need of routing messages within a given local area (geographic proximity) with constraints about both timeliness and reliability (i.e., probability of reception). This paper presents a Non-Convex Mixed-Integer Nonlinear Programming model for a routing problem with probabilistic constraints on a wireless network. We propose an exact approach consisting of a branch-and-bound framework based on a novel Lagrangian decomposition to derive lower bounds. Preliminary experimental results indicate that the proposed algorithm is competitive with state-of-the-art general-purpose solvers, and can provide better solutions than existing highly tailored ad-hoc heuristics to this problem.

Cacciola M., Frangioni A., Galli L., Stea G. (2021). A lagrangian approach to chance constrained routing with local broadcast. Cham : Springer Nature [10.1007/978-3-030-63072-0_22].

A lagrangian approach to chance constrained routing with local broadcast

Galli L.;
2021

Abstract

Mobile cellular networks play a pivotal role in emerging Internet of Things (IoT) applications, such as vehicular collision alerts, malfunctioning alerts in Industry-4.0 manufacturing plants, periodic distribution of coordination information for swarming robots or platooning vehicles, etc. All these applications are characterized by the need of routing messages within a given local area (geographic proximity) with constraints about both timeliness and reliability (i.e., probability of reception). This paper presents a Non-Convex Mixed-Integer Nonlinear Programming model for a routing problem with probabilistic constraints on a wireless network. We propose an exact approach consisting of a branch-and-bound framework based on a novel Lagrangian decomposition to derive lower bounds. Preliminary experimental results indicate that the proposed algorithm is competitive with state-of-the-art general-purpose solvers, and can provide better solutions than existing highly tailored ad-hoc heuristics to this problem.
2021
AIRO Springer Series
277
291
Cacciola M., Frangioni A., Galli L., Stea G. (2021). A lagrangian approach to chance constrained routing with local broadcast. Cham : Springer Nature [10.1007/978-3-030-63072-0_22].
Cacciola M.; Frangioni A.; Galli L.; Stea G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/983374
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact