Robust estimation of covariance matrices when some of the data at hand are missing is an important problem. It has been studied by Little and Smith (1987) and more recently by Cheng and Victoria-Feser (2002). The latter propose the use of high breakdown estimators and so-called hybrid algorithms (see, e.g., Woodruff and Rocke, 1994). In particular, the minimum volume ellipsoid of Rousseeuw (1984) is adapted to the case of missing data. To compute it, they use (a modified version of) the forward search algorithm (see e.g. Atkinson, 1994). In this paper, we propose to use instead a modification of the C-step algorithm proposed by Rousseeuw and Van Driessen (1999) which is actually a lot faster. We also adapt the orthogonalized Gnanadesikan-Kettenring (OGK) estimator proposed by Maronna and Zamar (2002) to the case of missing data and use it as a starting point for an adapted S-estimator. Moreover, we conduct a simulation study to compare different robust estimators in terms of their efficiency and breakdown.

Copt, S., Victoria Feser, M. (2004). Fast Algorithms for Computing High Breakdown Covariance Matrices with Missing Data. Basel : Birkhauser [10.1007/978-3-0348-7958-3_7].

Fast Algorithms for Computing High Breakdown Covariance Matrices with Missing Data

Victoria Feser, Maria-Pia
2004

Abstract

Robust estimation of covariance matrices when some of the data at hand are missing is an important problem. It has been studied by Little and Smith (1987) and more recently by Cheng and Victoria-Feser (2002). The latter propose the use of high breakdown estimators and so-called hybrid algorithms (see, e.g., Woodruff and Rocke, 1994). In particular, the minimum volume ellipsoid of Rousseeuw (1984) is adapted to the case of missing data. To compute it, they use (a modified version of) the forward search algorithm (see e.g. Atkinson, 1994). In this paper, we propose to use instead a modification of the C-step algorithm proposed by Rousseeuw and Van Driessen (1999) which is actually a lot faster. We also adapt the orthogonalized Gnanadesikan-Kettenring (OGK) estimator proposed by Maronna and Zamar (2002) to the case of missing data and use it as a starting point for an adapted S-estimator. Moreover, we conduct a simulation study to compare different robust estimators in terms of their efficiency and breakdown.
2004
Theory and Applications of Recent Robust Methods
71
82
Copt, S., Victoria Feser, M. (2004). Fast Algorithms for Computing High Breakdown Covariance Matrices with Missing Data. Basel : Birkhauser [10.1007/978-3-0348-7958-3_7].
Copt, S.; Victoria Feser, Maria-Pia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/952928
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact