The chapter discusses the use of data-driven approaches in television studies, which has become possible due to the increasing availability of digital data. Computational techniques can be used to analyze cultural artifacts, gain insights into audience reactions to specific shows or episodes, and investigate patterns and trends in television programming over time. The chapter also highlights the challenges of analyzing television series, which are complex open systems that interact with external factors such as the production process, audience feedback, and cultural and social context. Content analysis, which involves qualitative and quantitative methods based on the coding process and data collection, can be used to analyze various elements of a TV series. Generative AI is also discussed, which refers to the use of deep multi-modal algorithms to generate new content such as images, speech, and text. Generative methods like Generative Adversarial Networks (GANs) and Stable Diffusion can create new content that is almost indistinguishable from real data. While generating videos is more challenging, Recurrent Neural Networks (RNNs) like LSTMs can capture the temporal dynamics of the scenes to create interesting and promising applications for complex, but short-duration videos.
Esposti, M.D., Pescatore, G. (2023). Exploring TV Seriality and Television Studies through Data-Driven Approaches. Bologna : Media Mutations Publishing [10.21428/93b7ef64.ec022085].
Exploring TV Seriality and Television Studies through Data-Driven Approaches
Esposti, Mirko Degli;Pescatore, Guglielmo
2023
Abstract
The chapter discusses the use of data-driven approaches in television studies, which has become possible due to the increasing availability of digital data. Computational techniques can be used to analyze cultural artifacts, gain insights into audience reactions to specific shows or episodes, and investigate patterns and trends in television programming over time. The chapter also highlights the challenges of analyzing television series, which are complex open systems that interact with external factors such as the production process, audience feedback, and cultural and social context. Content analysis, which involves qualitative and quantitative methods based on the coding process and data collection, can be used to analyze various elements of a TV series. Generative AI is also discussed, which refers to the use of deep multi-modal algorithms to generate new content such as images, speech, and text. Generative methods like Generative Adversarial Networks (GANs) and Stable Diffusion can create new content that is almost indistinguishable from real data. While generating videos is more challenging, Recurrent Neural Networks (RNNs) like LSTMs can capture the temporal dynamics of the scenes to create interesting and promising applications for complex, but short-duration videos.File | Dimensione | Formato | |
---|---|---|---|
Media Mutations 13 (chapter 2)-21688205244671.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
179.23 kB
Formato
Adobe PDF
|
179.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.