We present a series of results focused on the decay in time of solutions of classical and anomalous diffusive equations in a bounded domain. The size of the solution is measured in a Lebesgue space, and the setting comprises time-fractional and space-fractional equations and operators of nonlinear type. We also discuss how fractional operators may affect long-time asymptotics.

Affili, E., Dipierro, S., Valdinoci, E. (2020). Decay Estimates in Time for Classical and Anomalous Diffusion. Parkville : de Gier, J., Praeger, C., Tao, T. [10.1007/978-3-030-38230-8_12].

Decay Estimates in Time for Classical and Anomalous Diffusion

Affili, Elisa;Dipierro, Serena;Valdinoci, Enrico
2020

Abstract

We present a series of results focused on the decay in time of solutions of classical and anomalous diffusive equations in a bounded domain. The size of the solution is measured in a Lebesgue space, and the setting comprises time-fractional and space-fractional equations and operators of nonlinear type. We also discuss how fractional operators may affect long-time asymptotics.
2020
2018 MATRIX Annals
167
182
Affili, E., Dipierro, S., Valdinoci, E. (2020). Decay Estimates in Time for Classical and Anomalous Diffusion. Parkville : de Gier, J., Praeger, C., Tao, T. [10.1007/978-3-030-38230-8_12].
Affili, Elisa; Dipierro, Serena; Valdinoci, Enrico
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/919163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact