The great hopes raised by the discovery of the immunoregulatory cytokine interleukin 12 (IL-12) as an anticancer agent were marred during early clinical experimentation because of severe adverse effects, which prompted a search for alternative formulations and routes of administration. Onco-immunotherapeutic viruses (OIVs) are wild-type or genetically engineered viruses that exert antitumor activity by causing death of the tumor cells they infect and by overcoming a variety of immunosuppressive mechanisms put in place by the tumors. OIVs have renewed the interest in IL-12, as they offer the opportunity to encode the cytokine transgenically from the viral genome and to produce it at high concentrations in the tumor bed. A large body of evidence indicates that IL-12 serves as a potent adjuvant for the immunotherapeutic response elicited by OIVs in murine tumor models. The list of OIVs includes onco-immunotherapeutic herpes simplex, adeno, measles, Newcastle disease, and Maraba viruses, among others. The large increase in IL-12-mediated adjuvanticity was invariably observed for all the OIVs analyzed. Indirect evidence suggests that locally delivered IL-12 may also increase tumor antigenicity. Importantly, the OIV/IL-12 treatment was not accompanied by adverse effects and elicited a long-lasting immune response capable of halting the growth of distant tumors. Thus, OIVs provide an avenue for reducing the clinical toxicity associated with systemic IL-12 therapy, by concentrating the cytokine at the site of disease. The changes to the tumor microenvironment induced by the IL-12-armed OIVs primed the tumors to an improved response to the checkpoint blockade therapy, suggesting that the triple combination is worth pursuing in the future. The highly encouraging results in preclinical models have prompted translation to the clinic. How well the IL-12-OIV-checkpoint inhibitors' combination will perform in humans remains to be fully investigated.
Vannini, A., Leoni, V., Campadelli-Fiume, G. (2021). Targeted Delivery of IL-12 Adjuvants Immunotherapy by Oncolytic Viruses. New York : Dr. Alexander Birbrair [10.1007/978-3-030-55617-4_4].
Targeted Delivery of IL-12 Adjuvants Immunotherapy by Oncolytic Viruses
Vannini, Andrea;Leoni, Valerio;Campadelli-Fiume, Gabriella
2021
Abstract
The great hopes raised by the discovery of the immunoregulatory cytokine interleukin 12 (IL-12) as an anticancer agent were marred during early clinical experimentation because of severe adverse effects, which prompted a search for alternative formulations and routes of administration. Onco-immunotherapeutic viruses (OIVs) are wild-type or genetically engineered viruses that exert antitumor activity by causing death of the tumor cells they infect and by overcoming a variety of immunosuppressive mechanisms put in place by the tumors. OIVs have renewed the interest in IL-12, as they offer the opportunity to encode the cytokine transgenically from the viral genome and to produce it at high concentrations in the tumor bed. A large body of evidence indicates that IL-12 serves as a potent adjuvant for the immunotherapeutic response elicited by OIVs in murine tumor models. The list of OIVs includes onco-immunotherapeutic herpes simplex, adeno, measles, Newcastle disease, and Maraba viruses, among others. The large increase in IL-12-mediated adjuvanticity was invariably observed for all the OIVs analyzed. Indirect evidence suggests that locally delivered IL-12 may also increase tumor antigenicity. Importantly, the OIV/IL-12 treatment was not accompanied by adverse effects and elicited a long-lasting immune response capable of halting the growth of distant tumors. Thus, OIVs provide an avenue for reducing the clinical toxicity associated with systemic IL-12 therapy, by concentrating the cytokine at the site of disease. The changes to the tumor microenvironment induced by the IL-12-armed OIVs primed the tumors to an improved response to the checkpoint blockade therapy, suggesting that the triple combination is worth pursuing in the future. The highly encouraging results in preclinical models have prompted translation to the clinic. How well the IL-12-OIV-checkpoint inhibitors' combination will perform in humans remains to be fully investigated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.