Although the Mobile-WiMAX technology is being deployed in the United States, Europe, Japan, Korea, Taiwan and in the Mideast, there are still ongoing discussions about the potential of this technology. What is really remarkable, in fact, with regard to the Mobile-WiMAX profile, is the high number of degrees of freedom that are left to manufacturers. The final decision on a lot of very basic and crucial aspects, such as, just to cite few of them, the bandwidth, the frame duration, the duplexing scheme and the up/downlink traffic asymmetry, are left to implementers. It follows that the performance of this technology is not clear yet, even to network operators. This consideration motivated our work, which is focused on the derivation of an analytical framework that, starting from system parameters and implementation choices, allows to evaluate the performance level provided by this technology, carefully taking all aspects of IEEE802.16e into account. In particular, the analysis starts from the choices to be made at the physical layer, among those admitted by the specification, and "goes up" through the protocol pillar to finally express the application layer throughput and the number of supported voice over IP (VoIP) users, carefully considering "along the way" all characteristics of the the medium access control (MAC) layer, the resource allocation strategies, the overhead introduced, the inherent inefficiencies, etc.
G. Pasolini, O. Andrisano, A. Bazzi, G. Leonardi (2010). Mobile WiMAX Performance Investigation. VIENNA : IN-TECH Education and Publishing.
Mobile WiMAX Performance Investigation
PASOLINI, GIANNI;ANDRISANO, ORESTE;BAZZI, ALESSANDRO;LEONARDI, GIACOMO
2010
Abstract
Although the Mobile-WiMAX technology is being deployed in the United States, Europe, Japan, Korea, Taiwan and in the Mideast, there are still ongoing discussions about the potential of this technology. What is really remarkable, in fact, with regard to the Mobile-WiMAX profile, is the high number of degrees of freedom that are left to manufacturers. The final decision on a lot of very basic and crucial aspects, such as, just to cite few of them, the bandwidth, the frame duration, the duplexing scheme and the up/downlink traffic asymmetry, are left to implementers. It follows that the performance of this technology is not clear yet, even to network operators. This consideration motivated our work, which is focused on the derivation of an analytical framework that, starting from system parameters and implementation choices, allows to evaluate the performance level provided by this technology, carefully taking all aspects of IEEE802.16e into account. In particular, the analysis starts from the choices to be made at the physical layer, among those admitted by the specification, and "goes up" through the protocol pillar to finally express the application layer throughput and the number of supported voice over IP (VoIP) users, carefully considering "along the way" all characteristics of the the medium access control (MAC) layer, the resource allocation strategies, the overhead introduced, the inherent inefficiencies, etc.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.