The increasing workforce ageing brings benefits and challenges in industrial structures. Industries consider aged workers as essential resources thanks to their experience and skills. Conversely, the aged workers' progressive functional and cognitive decline reduce their tolerance to industrial environmental conditions, negatively impacting performance. In particular, after age 30, there is a progressive inefficiency in the physiological response to temperature changes. Therefore, thermal discomfort conditions have a worse impact as the workers' age increases. The Predicted Mean Vote (PMV) methodology is conventionally used to predict the human sensation of thermal comfort on a seven-point thermal sensation scale. Such methodology does not take account of progressive decline in thermoregulation capacity with age. This paper aims to fill this gap by proposing an analytic model for the prediction of thermal comfort. The Metabolic rate (M) parameter in the PMV equation is calculated from the Harris-Benedict equations revised by Mifflin and St Jeor (1990) for the Basal Metabolic Rate (BMR), including the age factor for a more accurate evaluation of the workers' thermal sensation. The aim is to safeguard the aged workers' health and well-being to enhance their performance during work.

Thermal Comfort Prediction of Aged Industrial Workers based on Occupants' Basal Metabolic Rate / Caporale A., Galizia F. G., Botti L., Mora C.. - ELETTRONICO. - 65:(2022), pp. 120-129. [10.54941/ahfe1002666]

Thermal Comfort Prediction of Aged Industrial Workers based on Occupants' Basal Metabolic Rate

Caporale A.;Galizia F. G.;Mora C.
2022

Abstract

The increasing workforce ageing brings benefits and challenges in industrial structures. Industries consider aged workers as essential resources thanks to their experience and skills. Conversely, the aged workers' progressive functional and cognitive decline reduce their tolerance to industrial environmental conditions, negatively impacting performance. In particular, after age 30, there is a progressive inefficiency in the physiological response to temperature changes. Therefore, thermal discomfort conditions have a worse impact as the workers' age increases. The Predicted Mean Vote (PMV) methodology is conventionally used to predict the human sensation of thermal comfort on a seven-point thermal sensation scale. Such methodology does not take account of progressive decline in thermoregulation capacity with age. This paper aims to fill this gap by proposing an analytic model for the prediction of thermal comfort. The Metabolic rate (M) parameter in the PMV equation is calculated from the Harris-Benedict equations revised by Mifflin and St Jeor (1990) for the Basal Metabolic Rate (BMR), including the age factor for a more accurate evaluation of the workers' thermal sensation. The aim is to safeguard the aged workers' health and well-being to enhance their performance during work.
2022
Social and Occupational Ergonomics
120
129
Thermal Comfort Prediction of Aged Industrial Workers based on Occupants' Basal Metabolic Rate / Caporale A., Galizia F. G., Botti L., Mora C.. - ELETTRONICO. - 65:(2022), pp. 120-129. [10.54941/ahfe1002666]
Caporale A., Galizia F. G., Botti L., Mora C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/905721
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact