The paper addresses the development of an artificial intelligence algorithm implemented for maximum power point tracking control of a unmanned underwater vehicle. It is shown that this algorithm tracks the optimum operation point and provides fast response even in the presence of faults. The strategy implements the tracking algorithm by using real—time measurements, while providing maximum power to the grid without using online data training. The solution is simulated in the Matlab and Simulink to verify the effectiveness of the proposed approach when fault–free and faulty conditions are considered. The simulation results highlight efficient, intrinsic and passive fault tolerant performances of the algorithm for general unmanned underwater vehicles with low inertia.

Castaldi P., Farsoni S., Menghini M., Simani S. (2022). Artificial Intelligence Tools for Actuator Fault Diagnosis of an Unmanned Underwater Vehicle. Berlin : Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-10464-0_26].

Artificial Intelligence Tools for Actuator Fault Diagnosis of an Unmanned Underwater Vehicle

Castaldi P.
Primo
Writing – Original Draft Preparation
;
Menghini M.
Penultimo
Data Curation
;
2022

Abstract

The paper addresses the development of an artificial intelligence algorithm implemented for maximum power point tracking control of a unmanned underwater vehicle. It is shown that this algorithm tracks the optimum operation point and provides fast response even in the presence of faults. The strategy implements the tracking algorithm by using real—time measurements, while providing maximum power to the grid without using online data training. The solution is simulated in the Matlab and Simulink to verify the effectiveness of the proposed approach when fault–free and faulty conditions are considered. The simulation results highlight efficient, intrinsic and passive fault tolerant performances of the algorithm for general unmanned underwater vehicles with low inertia.
2022
Lecture Notes in Networks and Systems
392
403
Castaldi P., Farsoni S., Menghini M., Simani S. (2022). Artificial Intelligence Tools for Actuator Fault Diagnosis of an Unmanned Underwater Vehicle. Berlin : Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-10464-0_26].
Castaldi P.; Farsoni S.; Menghini M.; Simani S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/902886
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact