The chapter presents Virtual Element Methods for linear elasticity. In particular, displacement based methods stemming from the principle of virtual works for 2D problems, and mixed methods based on the Hellinger-Reissner variational principle for 2D and 3D problems are discussed and detailed. A series of numerical examples for each set of methods are given in order to show the characteristic features of the newly developed methods and to assess their accuracy and convergence properties.

Some Virtual Element Methods for Infinitesimal Elasticity Problems

Edoardo Artioli;Stefano de Miranda;Carlo Lovadina;Luca Patruno;
2022

Abstract

The chapter presents Virtual Element Methods for linear elasticity. In particular, displacement based methods stemming from the principle of virtual works for 2D problems, and mixed methods based on the Hellinger-Reissner variational principle for 2D and 3D problems are discussed and detailed. A series of numerical examples for each set of methods are given in order to show the characteristic features of the newly developed methods and to assess their accuracy and convergence properties.
The Virtual Element Method and its Applications
137
185
Edoardo Artioli, Stefano de Miranda, Carlo Lovadina, Luca Patruno, and Michele Visinoni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/897503
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact