An important class of computational techniques to solve inverse problems in image processing relies on a variational approach: the optimal output is obtained by finding a minimizer of an energy function or “model” composed of two terms, the data-fidelity term, and the regularization term. Much research has focused on models where both terms are convex, which leads to convex optimization problems. However, there is evidence that non-convex regularization can improve significantly the output quality for images characterized by some sparsity property. This fostered recent research toward the investigation of optimization problems with non-convex terms. Non-convex models are notoriously difficult to handle as classical optimization algorithms can get trapped at unwanted local minimizers. To avoid the intrinsic difficulties related to non-convex optimization, the convex non-convex (CNC) strategy has been proposed, which allows the use of non-convex regularization while maintaining convexity of the total cost function. This work focuses on a general class of parameterized non-convex sparsity-inducing separable and non-separable regularizers and their associated CNC variational models. Convexity conditions for the total cost functions and related theoretical properties are discussed, together with suitable algorithms for their minimization based on a general forward-backward (FB) splitting strategy. Experiments on the two classes of considered separable and non-separable CNC variational models show their superior performance than the purely convex counterparts when applied to the discrete inverse problem of restoring sparsity-characterized images corrupted by blur and noise.
Lanza, A., Morigi, S., Selesnick, I.W., Sgallari, F. (2023). Convex Non-convex Variational Models. Cham : Springer [10.1007/978-3-030-98661-2_61].
Convex Non-convex Variational Models
Lanza, AlessandroPrimo
;Morigi, SerenaSecondo
;Sgallari, Fiorella
Ultimo
2023
Abstract
An important class of computational techniques to solve inverse problems in image processing relies on a variational approach: the optimal output is obtained by finding a minimizer of an energy function or “model” composed of two terms, the data-fidelity term, and the regularization term. Much research has focused on models where both terms are convex, which leads to convex optimization problems. However, there is evidence that non-convex regularization can improve significantly the output quality for images characterized by some sparsity property. This fostered recent research toward the investigation of optimization problems with non-convex terms. Non-convex models are notoriously difficult to handle as classical optimization algorithms can get trapped at unwanted local minimizers. To avoid the intrinsic difficulties related to non-convex optimization, the convex non-convex (CNC) strategy has been proposed, which allows the use of non-convex regularization while maintaining convexity of the total cost function. This work focuses on a general class of parameterized non-convex sparsity-inducing separable and non-separable regularizers and their associated CNC variational models. Convexity conditions for the total cost functions and related theoretical properties are discussed, together with suitable algorithms for their minimization based on a general forward-backward (FB) splitting strategy. Experiments on the two classes of considered separable and non-separable CNC variational models show their superior performance than the purely convex counterparts when applied to the discrete inverse problem of restoring sparsity-characterized images corrupted by blur and noise.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.