An important class of computational techniques to solve inverse problems in image processing relies on a variational approach: the optimal output is obtained by finding a minimizer of an energy function or “model” composed of two terms, the data-fidelity term, and the regularization term. Much research has focused on models where both terms are convex, which leads to convex optimization problems. However, there is evidence that non-convex regularization can improve significantly the output quality for images characterized by some sparsity property. This fostered recent research toward the investigation of optimization problems with non-convex terms. Non-convex models are notoriously difficult to handle as classical optimization algorithms can get trapped at unwanted local minimizers. To avoid the intrinsic difficulties related to non-convex optimization, the convex non-convex (CNC) strategy has been proposed, which allows the use of non-convex regularization while maintaining convexity of the total cost function. This work focuses on a general class of parameterized non-convex sparsity-inducing separable and non-separable regularizers and their associated CNC variational models. Convexity conditions for the total cost functions and related theoretical properties are discussed, together with suitable algorithms for their minimization based on a general forward-backward (FB) splitting strategy. Experiments on the two classes of considered separable and non-separable CNC variational models show their superior performance than the purely convex counterparts when applied to the discrete inverse problem of restoring sparsity-characterized images corrupted by blur and noise.

Lanza, A., Morigi, S., Selesnick, I.W., Sgallari, F. (2023). Convex Non-convex Variational Models. Cham : Springer [10.1007/978-3-030-98661-2_61].

Convex Non-convex Variational Models

Lanza, Alessandro
Primo
;
Morigi, Serena
Secondo
;
Sgallari, Fiorella
Ultimo
2023

Abstract

An important class of computational techniques to solve inverse problems in image processing relies on a variational approach: the optimal output is obtained by finding a minimizer of an energy function or “model” composed of two terms, the data-fidelity term, and the regularization term. Much research has focused on models where both terms are convex, which leads to convex optimization problems. However, there is evidence that non-convex regularization can improve significantly the output quality for images characterized by some sparsity property. This fostered recent research toward the investigation of optimization problems with non-convex terms. Non-convex models are notoriously difficult to handle as classical optimization algorithms can get trapped at unwanted local minimizers. To avoid the intrinsic difficulties related to non-convex optimization, the convex non-convex (CNC) strategy has been proposed, which allows the use of non-convex regularization while maintaining convexity of the total cost function. This work focuses on a general class of parameterized non-convex sparsity-inducing separable and non-separable regularizers and their associated CNC variational models. Convexity conditions for the total cost functions and related theoretical properties are discussed, together with suitable algorithms for their minimization based on a general forward-backward (FB) splitting strategy. Experiments on the two classes of considered separable and non-separable CNC variational models show their superior performance than the purely convex counterparts when applied to the discrete inverse problem of restoring sparsity-characterized images corrupted by blur and noise.
2023
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision
3
59
Lanza, A., Morigi, S., Selesnick, I.W., Sgallari, F. (2023). Convex Non-convex Variational Models. Cham : Springer [10.1007/978-3-030-98661-2_61].
Lanza, Alessandro; Morigi, Serena; Selesnick, Ivan W.; Sgallari, Fiorella
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/897501
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact